Saturday, July 20, 2013

College Algebra, Chapter 1, 1.4, Section 1.4, Problem 46

Evaluate the expression $\displaystyle \frac{(1+2i)(3-i)}{2+i}$ in the form of $a + bi$.


$
\begin{equation}
\begin{aligned}
&= \frac{(1+2i)(3-i)}{2+i}\\
\\
&= \frac{3-i+6i-2i^2}{2+i} && \text{Use FOIL method}\\
\\
&= \frac{3+5i -2 (-1)}{2+i} && \text{recall that } i^2 = -1\\
\\
&= \frac{5+5i}{2+i} && \text{Simplify the numerator}\\
\\
&= \left( \frac{5+5i}{2+i} \right) \left( \frac{2-i}{2-i} \right) && \text{Multiply by the denominator of the conjugate}\\
\\
&= \frac{10-5i+10i-5i^2}{2^2 - i^2} && \text{Apply FOIL method}\\
\\
&= \frac{10-5i+10i-5(-1)}{4-(-1)} && \text{recall that } i^2 = -1\\
\\
&= \frac{15 + 5i}{5} && \text{Simplify and group terms}\\
\\
&= 3 + i
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...