To determine the convergence or divergence of the series sum_(n=1)^oo (-1)^(n+1)/n^2 , we may apply Alternating Series Test.
In Alternating Series Test, the series sum (-1)^(n+1)a_n is convergent if:
1) a_n is monotone and decreasing sequence.
2) lim_(n-gtoo) a_n =0
3) a_ngt=0
For the series sum_(n=1)^oo (-1)^(n+1)/n^2 , we have:
a_n = 1/(n^2) which is a decreasing sequence.
As "n " increases, the 1/n^2 decreases.
Then, we set-up the limit as :
lim_(n-gtoo)1/n^2 = 1/oo =0
By alternating series test criteria, the seriessum_(n=1)^oo (-1)^(n+1)/n^2 converges.
The series sum_(n=1)^oo (-1)^(n+1)/n^2 has positive and negative elements. Thus, we must verify if the series converges absolutely or conditionally. Recall:
a) Absolute Convergence: sum a_n is absolutely convergent if sum|a_n| is convergent.
b) Conditional Convergence: sum a_n is conditionally convergent if sum|a_n| is divergent and sum a_n is convergent.
We evaluate the sum |a_n| as :
sum_(n=1)^oo |(-1)^(n+1)/n^2| =sum_(n=1)^oo 1/n^2
Apply the p-series test sum_(n=1)^oo 1/n^p is convergent if pgt1 and divergent if 0ltplt=1 .
The series sum_(n=1)^oo 1/n^2 has p=2 which satisfies pgt1 . Thus, the series sum_(n=1)^oo |(-1)^(n+1)/n^2| is convergent.
Conclusion:
The series sum_(n=1)^oo (-1)^(n+1)/n^2 is absolutely convergent since sum |a_n| as sum_(n=1)^oo |(-1)^(n+1)/n^2| is convergent.
Thursday, June 20, 2013
sum_(n=1)^oo (-1)^(n+1)/n^2 Determine whether the series converges absolutely or conditionally, or diverges.
Subscribe to:
Post Comments (Atom)
Why is the fact that the Americans are helping the Russians important?
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
There are a plethora of rules that Jonas and the other citizens must follow. Again, page numbers will vary given the edition of the book tha...
-
The poem contrasts the nighttime, imaginative world of a child with his daytime, prosaic world. In the first stanza, the child, on going to ...
-
The given two points of the exponential function are (2,24) and (3,144). To determine the exponential function y=ab^x plug-in the given x an...
-
Robinson Crusoe, written by Daniel Defoe, is a novel. A novel is a genre defined as a long imaginative work of literature written in prose. ...
-
Hello! This expression is already a sum of two numbers, sin(32) and sin(54). Probably you want or express it as a product, or as an expressi...
-
A tempest is a violent storm and considering that the first scene of the play takes place in such a storm, the title is quite fitting. It is...
-
Macbeth is reflecting on the Weird Sisters' prophecy and its astonishing accuracy. The witches were totally correct in predicting that M...
No comments:
Post a Comment