Monday, June 10, 2013

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 20

Determine the integral $\displaystyle \int \cos^2 x \sin 2x dx$


$
\begin{equation}
\begin{aligned}

\int \cos^2 x \sin 2x dx =& \int \cos^2 x (2 \sin x \cos x) dx \qquad \text{Apply Trigonometric Identity } \sin 2x = 2 \sin x \cos x
\\
\\
\int \cos^2 x \sin 2x dx =& 2 \int \cos^3 x \sin x dx

\end{aligned}
\end{equation}
$


Let $u = \cos x$, then $du = - \sin x dx$, so $\sin x dx = -du$. Thus,


$
\begin{equation}
\begin{aligned}

2 \int \cos^3 x \sin x dx =& 2 \int u^3 \cdot -du
\\
\\
2 \int \cos^3 x \sin x dx =& -2 \int u^3 du
\\
\\
2 \int \cos^3 x \sin x dx =& -2 \left( \frac{u^{3 + 1}}{3 + 1} \right) + c
\\
\\
2 \int \cos^3 x \sin x dx =& \frac{-2u^4}{4} + c
\\
\\
2 \int \cos^3 x \sin x dx =& \frac{-u^4}{2} + c
\\
\\
2 \int \cos^3 x \sin x dx =& \frac{-(\cos x)^4}{2} + c
\\
\\
2 \int \cos^3 x \sin x dx =& \frac{-\cos^4 x}{2} + c


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...