Monday, June 10, 2013

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 20

Determine the integral cos2xsin2xdx


cos2xsin2xdx=cos2x(2sinxcosx)dxApply Trigonometric Identity sin2x=2sinxcosxcos2xsin2xdx=2cos3xsinxdx


Let u=cosx, then du=sinxdx, so sinxdx=du. Thus,


2cos3xsinxdx=2u3du2cos3xsinxdx=2u3du2cos3xsinxdx=2(u3+13+1)+c2cos3xsinxdx=2u44+c2cos3xsinxdx=u42+c2cos3xsinxdx=(cosx)42+c2cos3xsinxdx=cos4x2+c

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...