sum_(n=1)^oon/(n^4+2n^2+1)
The integral test is applicable if f is positive, continuous and decreasing function on the infinite interval [k,oo) where k>=1 and a_n=f(x) . Then the series converges or diverges if and only if the improper integral int_k^oof(x)dx converges or diverges.
For the given series a_n=n/(n^4+2n^2+1)
Consider f(x)=x/(x^4+2x^2+1)
f(x)=x/(x^2+1)^2
From the attached graph of the function, we can see that the function is continuous, positive and decreasing on the interval [1,oo)
We can also determine whether f(x) is decreasing by finding the derivative f'(x) such that f'(x)<0 for x>=1 .
Apply the quotient rule to find the derivative,
f'(x)=((x^2+1)^2d/dx(x)-xd/dx(x^2+1)^2)/(x^2+1)^4
f'(x)=((x^2+1)^2-x(2(x^2+1)2x))/(x^2+1)^4
f'(x)=((x^2+1)(x^2+1-4x^2))/(x^2+1)^4
f'(x)=(-3x^2+1)/(x^2+1)^3
f'(x)=-(3x^2-1)/(x^2+1)^3<0
Since the function satisfies the conditions for the integral test, we can apply the integral test.
Now let's determine the convergence or divergence of the improper integral as follows:
int_1^oox/(x^2+1)^2dx=lim_(b->oo)int_1^bx/(x^2+1)^2dx
Let's first evaluate the indefinite integral intx/(x^2+1)^2dx
Apply integral substitution:u=x^2+1
=>du=2xdx
intx/(x^2+1)^2dx=int1/(u^2)(du)/2
=1/2int1/u^2du
Apply the power rule,
=1/2(u^(-2+1)/(-2+1))
=-1/(2u)
Substitute back u=(x^2+1)
=-1/(2(x^2+1))+C where C is a constant
Now int_1^oox/(x^2+1)^2dx=lim_(b->oo)[-1/(2(x^2+1))]_1^b
=lim_(b->oo)-1/2[1/(b^2+1)-1/(1^2+1)]
=-1/2[0-1/2]
=1/4
Since the integral int_1^oox/(x^4+2x^2+1)dx converges, we conclude from the integral test that the series sum_(n=1)^oon/(n^4+2n^2+1) converges.
Wednesday, June 12, 2013
Calculus of a Single Variable, Chapter 9, 9.3, Section 9.3, Problem 22
Subscribe to:
Post Comments (Atom)
Why is the fact that the Americans are helping the Russians important?
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
There are a plethora of rules that Jonas and the other citizens must follow. Again, page numbers will vary given the edition of the book tha...
-
The poem contrasts the nighttime, imaginative world of a child with his daytime, prosaic world. In the first stanza, the child, on going to ...
-
The given two points of the exponential function are (2,24) and (3,144). To determine the exponential function y=ab^x plug-in the given x an...
-
The play Duchess of Malfi is named after the character and real life historical tragic figure of Duchess of Malfi who was the regent of the ...
-
The only example of simile in "The Lottery"—and a particularly weak one at that—is when Mrs. Hutchinson taps Mrs. Delacroix on the...
-
Hello! This expression is already a sum of two numbers, sin(32) and sin(54). Probably you want or express it as a product, or as an expressi...
-
Macbeth is reflecting on the Weird Sisters' prophecy and its astonishing accuracy. The witches were totally correct in predicting that M...
No comments:
Post a Comment