Friday, March 1, 2013

Single Variable Calculus, Chapter 3, 3.1, Section 3.1, Problem 3

a.) Determine the slope of the tangent line to the parabola $y = 4x - x^2$ at the point $(1, 3)$

$(i)\text{ Using the definition (Slope of the tangent line)}$

$\displaystyle \lim \limits_{x \to a} \frac{f(x) - f(a)} {x - a}$

Here, we have $a = 1$ and $f(x) = 4x - x^2$, so the slope is


$
\begin{equation}
\begin{aligned}

\displaystyle m =& \lim \limits_{x \to 1} \frac{f(x) - f(a)}{x - 1}\\
\\
\displaystyle m =& \lim \limits_{x \to 1} \frac{4x - x^2 - [4(1) - (1)^2]}{x - 1}
&& \text{ Substituting value of $a$ and $x$}\\
\\
\displaystyle m =& \lim \limits_{x \to 1} \frac{4x - x^2 - 3}{x - 1}
&& \text{ Factor the numerator}\\
\\
\displaystyle m =& \lim \limits_{x \to 1} \frac{-1(x - 3) \cancel{(x - 1)}}{\cancel{x - 1}}
&& \text{ Cancel out like terms and simplify}\\
\\
\displaystyle m =& \lim \limits_{x \to 1} (-x+3) = -1+3= 2
&& \text{ Evaluate the limit }\\

\end{aligned}
\end{equation}
$

Therefore,
The slope of the tangent line is $m=2$
$(ii)$ Using the equation

$\displaystyle m = \lim \limits_{h \to 0} \frac{f (a + h) - f(a)}{h}$

Let $f(x) = 4x - x^2$. So the slope of the tangent line at $(1, 3)$ is


$
\begin{equation}
\begin{aligned}

\displaystyle m =& \lim \limits_{h \to 0} \frac{f(1 + h) - f(1)}{h}\\
\\
\displaystyle m =& \lim \limits_{h \to 0} \frac{4(1 + h) - ( 1 + h)^2 - [4(1) - (1)^2]}{h}
&& \text{ Subsitute value of $a$} \\
\\
\displaystyle m =& \lim \limits_{h \to 0} \frac{4 + 4h - ( 1 + 2h + h^2) - 3}{h}
&& \text{ Expand and simplify }\\
\\
\displaystyle m =& \lim \limits_{h \to 0} \frac{2h - h^2}{h}
&& \text{ Factor the numerator}\\
\\
\displaystyle m =& \lim \limits_{h \to 0} \frac{\cancel{h} ( 2 - h)}{\cancel{h}}
&& \text{ Cancel out like terms }\\
\\
\displaystyle m =& \lim \limits_{h \to 0} (2 - h) = 2 - 0 = 2
&& \text{ Evaluate the limit}\\
\end{aligned}
\end{equation}
$

Therefore,
The slope of the tangent line is $m=2$
b.) Write an expression of the tangent line in part (a).

Using the point slope form


$
\begin{equation}
\begin{aligned}

y - y_1 =& m ( x - x_1) && \\
\\
y - 3 =& 2 ( x - 1)
&& \text{ Substitute value of $x, y$ and $m$}\\
\\
y =& 2x - 2 + 3
&& \text{ Combine like terms }\\
y =& 2x + 1
\end{aligned}
\end{equation}
$

Therefore,
The equation of the tangent line at $(1,3)$ is $y = 2x + 1$
c.) Illustrate the graph of the parabola and the tangent line. As a check on your work, zoom in toward the point $(1,3)$ until
the parabola and the tangent line are indistinguishable.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...