Sunday, March 17, 2013

int_0^ln5 e^x/(1+e^(2x)) dx Evaluate the definite integral

For the given integral problem: int_0^(ln(5))e^x/(1+e^(2x))dx , it resembles the basic integration formula for inverse tangent:
int_a^b (du)/(u^2+c^2) = (1/c)arctan(u/c) |_a^b
where we let:
u^2 =e^(2x) or (e^x)^2   then u= e^x
c^2 =1 or 1^2 then c=1
For the derivative of u =e^(x) , we apply the derivative of exponential function:
du =e^x dx .
 
Applying u-substitution: u = e^x and du = e^x dx , we get:
int e^x/(1+e^(2x))dx =int (e^xdx)/(1+(e^x)^2)
                              =int (du)/(1+(u)^2)
Applying the basic integral formula of inverse tangent, we get:
int (du)/(1+(u)^2) =(1/1)arctan(u/1)
                           = arctan(u)
Express it in terms of x by plug-in u=e^x :
arctan(u) =arctan(e^x)
 
Evaluate with the given boundary limit:
arctan(e^x)|_0^(ln(5)) =arctan(e^(ln(5)))-arctan(e^0)
                          =arctan(5)-arctan(1)
                                =arctan(5) -pi/4

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...