Wednesday, March 27, 2013

int (3-x) / (3x^2-2x-1) dx Use partial fractions to find the indefinite integral

int(3-x)/(3x^2-2x-1)dx
Let's use partial fraction decomposition on the integrand,
(3-x)/(3x^2-2x-1)=(3-x)/(3x^2+x-3x-1)
=(3-x)/(x(3x+1)-1(3x+1))
=(3-x)/((3x+1)(x-1))
Now form the partial fractions using the denominator,
(3-x)/((3x+1)(x-1))=A/(3x+1)+B/(x-1)
Multiply equation by the denominator (3x+1)(x-1)
=>(3-x)=A(x-1)+B(3x+1)
=>3-x=Ax-A+3Bx+B
=>3-x=(A+3B)x+(-A+B)
comparing the coefficients of the like terms,
A+3B=-1   ----------------(1)
-A+B=3      ----------------(2)
Now let's solve the above equations to get A and B,
Add the equations 1 and 2,
4B=-1+3
4B=2
B=2/4
B=1/2
Plug in the value of B in equation 1,
A+3(1/2)=-1
A+3/2=-1
A=-1-3/2
A=-5/2
Plug in the value of A and B in the partial fraction template,
=(-5/2)/(3x+1)+(1/2)/(x-1)
=-5/(2(3x+1))+1/(2(x-1))
So, int(3-x)/(3x^2-2x-1)dx=int(-5/(2(3x+1))+1/(2(x-1)))dx
Apply the sum rule,
=int-5/(2(3x+1))dx+int1/(2(x-1))dx
Take the constant out,
=-5/2int1/(3x+1)dx+1/2int1/(x-1)dx
Now let's evaluate both the above integrals separately,
int1/(3x+1)dx
Apply integral substitution:u=3x+1
=>du=3dx
=int1/u(du)/3
Take the constant out,
=1/3int1/udu
Use the common integral:int1/xdx=ln|x|
=1/3ln|u|
Substitute back u=3x+1
=1/3ln|3x+1|
Now evaluate the second integral.
int1/(x-1)dx
Apply integral substitution: u=x-1
du=1dx
=int1/udu
Use the common integral:int1/xdx=ln|x|
=ln|u|
Substitute back u=x-1
=ln|x-1|
int(3-x)/(3x^2-2x-1)dx=-5/2(1/3ln|3x+1|)+1/2ln|x-1| 
Simplify and add a constant C to the solution,
=-5/6ln|3x+1|+1/2ln|x-1|+C
 

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...