Friday, August 17, 2012

Single Variable Calculus, Chapter 8, 8.1, Section 8.1, Problem 42

Evaluate $\displaystyle \int x^2 \sin 2x dx$. Illustrate and check whether your answer is reasonable by gaphing both the function and its antiderivative suppose that $c = 0$.

If we use $2 = 2x$, then $\displaystyle x = \frac{z}{2}$ so $\displaystyle dx = \frac{1}{2} dz$
$\displaystyle \int x^2 \sin 2x dx = \int \left( \frac{z}{2} \right)^2 (\sin z) \left( \frac{dz}{2} \right) = \frac{1}{8} \int z^2 \sin z dz$

By using integration by parts,
If we let $u = z^2$ and $dv = \sin z dz$. Then,
$du = 2z dz$ and $ v = - \cos z$

Thus,


$
\begin{equation}
\begin{aligned}
\frac{1}{8} \int z^2 \sin z dz = uv - \int v du &= - z^2 \cos z - \int (-\cos z) ( 2z dz)\\
\\
&= -z^2 \cos z + 2 \int z \cos z dz
\end{aligned}
\end{equation}
$

Again by using integration by parts, if we let $u_1 = z$ and $dv_1 = \cos z dz$, then
$du_1 = dz$ and $v_1 = \sin z$


$
\begin{equation}
\begin{aligned}
\text{so, } \int z \cos z dz = u_1 v_1 - \int v_z du_1 &= z \sin z - \int \sin z dz\\
\\
&= z \sin z - (-\cos z)\\
\\
&= z \sin z + \cos z
\end{aligned}
\end{equation}
$


Going back to the first equation,

$
\begin{equation}
\begin{aligned}
\frac{1}{8} \int z^2 \sin z dz &= \frac{1}{8} \left[ -z^2 \cos z + 2 (z \sin z + \cos z) \right]\\
\\
&= \frac{-z^2 \cos z}{8} + \frac{z \sin z}{4} + \frac{\cos z}{4}+ c
\end{aligned}
\end{equation}
$


but $z = 2x$, therefore,

$
\begin{equation}
\begin{aligned}
\int x^2 \sin 2x dx &= \frac{-(2x)^2}{8} \cos (2x) + \frac{(2x) \sin (2x)}{4} + \frac{\cos 2x}{4} + c\\
\\
&= \frac{-x^2 \cos (2x)}{2} + \frac{x}{2} \sin(2x) + \frac{\cos 2x}{4} + c
\end{aligned}
\end{equation}
$




We can see from the graph that our answer is reasonable, because the graph of the anti-derivative $f$ is increasing when $f'$ is positive. On the other hand, the graph of $f$ is decreasing when $f'$ is negative.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...