Wednesday, August 22, 2012

Beginning Algebra With Applications, Chapter 6, Test, Section Test, Problem 10

Solve by substitution: $
\begin{equation}
\begin{aligned}

3x - 5y =& 13 \\
x+3y =& 1

\end{aligned}
\end{equation}
$


$
\begin{equation}
\begin{aligned}

x+3y =& 1
&& \text{Solve equation 2 for $x$}
\\
x =& 1-3y
&&
\\
3x-5y =& 13
&& \text{Substitute $1-3y$ for $x$ in equation 1}
\\
3(1-3y)-5y =& 13
&& \text{Solve for } y
\\
3-9y - 5y =& 13
&&
\\
-14y =& 10
&&
\\
y =& \frac{-10}{14}
&&
\\
\
y =& \frac{-5}{7}
&&

\end{aligned}
\end{equation}
$


Substitute the value of $y$ in equation 2


$
\begin{equation}
\begin{aligned}

x =& 1-3 \left( \frac{-5}{7} \right)
\\
\\
x =& 1 + \frac{15}{7}
\\
\\
x =& \frac{22}{7}


\end{aligned}
\end{equation}
$



The solution is $\displaystyle \left( \frac{22}{7}, \frac{-5}{7} \right)$.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...