Friday, August 10, 2012

College Algebra, Chapter 7, 7.2, Section 7.2, Problem 20

Solve the matrix equation $2A = B - 3X$ for the unknown matrix $X$, where

We solve for $X$


$
\begin{equation}
\begin{aligned}

2A =& B - 3X
&& \text{Given equation}
\\
\\
3X =& B - 2A
&& \text{Add the matrix $3X - 2A$ to each side}
\\
\\
X =& \frac{1}{3} (B - 2A)
&& \text{Multiply each side by the scalar } \frac{1}{3}

\end{aligned}
\end{equation}
$


So,


$
\begin{equation}
\begin{aligned}

X =& \frac{1}{3} \left( \left[ \begin{array}{ccc}
3 & \displaystyle \frac{1}{2} & 5 \\
1 & -1 & 3
\end{array} \right] - 2 \left[ \begin{array}{cc}
2 & -5 \\
0 & 7
\end{array} \right] \right)

&& \text{Substitute the matrices $B$ and $A$}


\end{aligned}
\end{equation}
$


But $B - 2A$ is undefined because we can't add matrices of different dimensions.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...