Monday, April 23, 2012

Single Variable Calculus, Chapter 3, 3.2, Section 3.2, Problem 49

Prove that the function $f(x) = |x-6|$ is not differentiable at 6. Find formula for $f'$ and sketch its graph.

From the definition of absolute value,

$
f(x) = |x-6|= \left\{
\begin{array}{c}
x-6 & \text{if} & x > 0\\
-(x-6) & \text{if} & x < 0
\end{array}\right.
\qquad
\Longrightarrow
\qquad
f(x) = \left\{
\begin{array}{c}
x - 6 & \text{if} & x > 0\\
-x+6 & \text{if} & x < 0
\end{array}\right.
$


From the definition of derivative,
$\displaystyle f'_+ (x) = \lim\limits_{h \to 0^+} \frac{f(x+h) - f(x)}{h} \qquad \text{ and }
\qquad f'_- (x) = \lim\limits_{h \to 0^-} \frac{f(x+h)-f(x)}{h}$

For Right Hand,

$
\begin{equation}
\begin{aligned}
f'_+ (x) & = \lim\limits_{h \to 0^+} \frac{x+h-6-(x-6)}{h}\\
f'_+ (x) & = \lim\limits_{h \to 0^+} \frac{\cancel{-6}-\cancel{x}+\cancel{6}}{h}\\
f'_+ (x) & = \lim\limits_{h \to 0^+} \frac{\cancel{h}}{\cancel{h}}\\
f'_+ (x) & = \lim\limits_{h \to 0^+} 1\\
f'_+ (6) & = 1
\end{aligned}
\end{equation}
$


For Left Hand,

$
\begin{equation}
\begin{aligned}
f'_- (x) & = \lim\limits_{h \to 0^-} \frac{-(x+h)+6-(-x+6)}{h}\\
f'_- (x) & = \lim\limits_{h \to 0^-} \frac{\cancel{-x}-h+\cancel{6}+\cancel{x}-\cancel{6}}{h}\\
f'_- (x) & = \lim\limits_{h \to 0^-} \frac{\cancel{h}}{\cancel{h}}\\
f'_- (x) & = \lim\limits_{h \to 0^-} -1\\
f'_- (6) & = -1
\end{aligned}
\end{equation}
$


$f'_+ (6) \neq f'_- (6)$; Therefore, $f$ is not differentiable at 6.
We can find the formula for $f'$ using $f'_- (x) = -1$ and $f'(x) = 1$
Therefore, we can rewrite $f'(x)$ as

$
f'(x) = \left\{
\begin{array}{c}
1 & \text{if} & x \geq 6\\
-1 & \text{if} & x < 6
\end{array}\right.
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...