Thursday, April 12, 2012

Single Variable Calculus, Chapter 3, 3.1, Section 3.1, Problem 5

Determine the equation of the tangent line to the curve $\displaystyle y = \frac{x - 1}{x - 2}$ at the point $(3, 2)$

Using the definition $\text{(Slope of the tangent line)}$

We have $a = 3$ and $\displaystyle f(x) = \frac{x - 1}{x - 2}$, so the slope is


$
\begin{equation}
\begin{aligned}

\displaystyle m &= \lim \limits_{x \to 3} \frac{f(x) - f(3)}{x - 3}\\
\\
\displaystyle m &= \lim \limits_{x \to 3} \frac{\frac{x - 1}{x - 2} - \left( \frac{3 - 1}{3 - 2} \right)}{x - 3}
&& \text{ Substitute value of $a$ and $x$}\\
\\
\displaystyle m &= \lim \limits_{x \to 3} \frac{\frac{x - 1}{x - 2} - 2}{x - 3}
&& \text{ Get the LCD and simplify}\\
\\
\displaystyle m &= \lim \limits_{x \to 3} \frac{-x + 3}{(x - 3)(x - 2)}
&& \text{ Factor the numerator}\\
\\
\displaystyle m &= \lim \limits_{x \to 3} \frac{-1 \cancel{(x - 3)}}{\cancel{(x - 3)}(x - 2)}
&& \text{ Cancel out like terms}\\
\\
\displaystyle m &= \lim \limits_{x \to 3} \frac{-1}{x - 2} = \frac{-1}{3-2} = -\frac{1}{1} = -1
&& \text{ Evaluate the limit}\\
\end{aligned}
\end{equation}
$

Therefore,
The slope of the tangent line is $m = -1$
Using point slope form


$
\begin{equation}
\begin{aligned}

y - y_1 =& m ( x - x_1)\\
\\
y - 2 =& -1 ( x - 3)
&& \text{ Substitute value of $x, y$ and $m$}\\
\\
y - 2 =& - x + 3
&& \text{ Combine like terms}\\
\\
y =& -x+5
\end{aligned}
\end{equation}
$


Therefore,
The equation of the tangent line at $(3,2)$ is $y = -x +5$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...