Friday, February 17, 2012

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 84

Find constants $A,B$ and $C$ such that the function $y= Ax^2+Bx+C$
satisfies the differential equation $y''+y'-2y=x^2$.


$
\begin{equation}
\begin{aligned}
y &= Ax^2+Bx+C\\
y' &= A \frac{d}{dx} (x^2) + B \frac{d}{dx} (x) + \frac{d}{dx} (C)\\
y' &= A(2x) + B(1) + 0\\
y' &= 2Ax+B\\
y'' &= 2A \frac{d}{dx}(x) + \frac{d}{dx}(B)\\
y'' &= 2A(1)+0\\
y'' &= 2A
\end{aligned}
\end{equation}
$


Substituting these values to the differential equation,

$ y'' + y' - 2y =x^2$


$
\begin{equation}
\begin{aligned}
2A+2Ax+B-2(Ax^2+Bx+C) = x^2\\
2A+2Ax+B-2Ax^2-2Bx-2C = x^2\\
-2Ax^2+(2A-2B)x+(2A+B-2C) = x^2
\end{aligned}
\end{equation}
$

Equating each power we get,
For $x^2$:

$
\begin{equation}
\begin{aligned}
-2A &= 1\\
A &= \frac{-1}{2}
\end{aligned}
\end{equation}
$


For $x$:

$
\begin{equation}
\begin{aligned}
2A-2B &= 0\\
\cancel{2}A &= \cancel{2}B\\
B = A &= \frac{-1}{2}
\end{aligned}
\end{equation}
$


For constant,

$
\begin{equation}
\begin{aligned}
2A + B - 2C &= 0\\
2\left(\frac{-1}{2}\right) + \left(\frac{-1}{2}\right) -2C &= 0\\
C &= \frac{-3}{4}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...