Friday, February 10, 2012

Calculus: Early Transcendentals, Chapter 7, 7.4, Section 7.4, Problem 11

int_0^1 2/(2x^2 + 3x + 1) dx
sol:
int_0^1 2/(2x^2 + 3x + 1) dx
= 2* int_0^1 1/(2x^2 + 3x + 1) dx
Now Find the partial fractions of 1/(2x^2 + 3x + 1)
1/(2x^2 + 3x + 1) = 1/((2x+1)(x+1))
= A/(2x+1) + B/(x+1)
= (A(x+1)+B(2x+1))/((2x+1)(x+1))
Now Equating the numerators we get
1=(A(x+1)+B(2x+1))
= Ax+2Bx+A+B
= (A+2B)x+ (A+B)
Equating the co -efficients of x and the constants
(A+2B) =0
=> A=-2B
and
1=A+B
1=-2B+B
1=-B => B=-1 so A=2
Then ,
1/((2x+1)(x+1)) = A/(2x+1) + B/(x+1)
= 2/(2x+1) - 1/(x+1)
Now,
int 1/((2x+1)(x+1)) dx = int [2/(2x+1) - 1/(x+1)] dx
= int 2/(2x+1) dx - int 1/(x+1) dx
= ln(2x+1) - ln(x+1) +c
Now Apply the limits 0 to 1we get
int_0^1 1/((2x+1)(x+1)) dx
= [ln(2x+1) - ln(x+1) +c]_0^1
=[ ln(2+1) - ln(1+1) ]-[ ln(0+1) - ln(0+1) ]
=[ ln(3) - ln(2) ]-[ ln(1) - ln(1) ]
as ln(1) =0 so,
= [ ln(3) - ln(2) ]
so,Now
int_0^1 2/((2x+1)(x+1)) dx = 2 *[ ln(3) - ln(2) ]
=ln(9) - ln(4)
=ln(9/4)
is the solution
:)

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...