Thursday, February 9, 2012

int x(5^(-x^2))dx Find the indefinite integral

Indefinite integral are written in the form of int f(x) dx = F(x) +C
 where: f(x) as the integrand
          F(x) as the anti-derivative function 
          C  as the arbitrary constant known as constant of integration
For the given problem int x(5^(-x^2)) dx has an integrand in a form of exponential function.
 To evaluate this, we may let:
u = -x^2 then   du= -2x dx or (-1/2)(du)= x dx .
Applying u-substitution, we get:
int x(5^(-x^2)) dx =int (5^(-x^2)) * x dx
                            =int (5^(u)) *(-1/2du)
                            =-1/2int (5^(u) du)
The integral part resembles the basic integration formula:
int a^u du = a^u/(ln(a))+C
Applying it to the problem: 
-1/2int (5^(u) du)=-1/2 * 5^(u)/ln(5) +C
Pug-in u =-x^2 , we get the definite integral:
-1/2 * 5^(-x^2)/ln(5) +C
 or
- 5^(-x^2)/(2ln(5)) +C
                      

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...