Wednesday, November 9, 2011

Single Variable Calculus, Chapter 6, 6.5, Section 6.5, Problem 2

Determine the average value of the function $f(x) = \sin 4x $ on the interval $[- \pi, \pi]$


$
\begin{equation}
\begin{aligned}

f_{ave} =& \frac{1}{b - a} \int^b_a f(x) dx
\\
\\
f_{ave} =& \frac{1}{\pi - (- \pi)} \int^8_1 \sin 4x dx
\\
\\
\text{Let } u =& 4x, \text{ then}
\\
\\
du =& 4dx

\end{aligned}
\end{equation}
$


Also, make sure that the upper and lower limits are now in terms of $u$.


$
\begin{equation}
\begin{aligned}

f_{ave} =& \frac{1}{2 \pi} \left(\frac{1}{4} \right) \int^{4(8)}_{4(1)} \sin u du
\\
\\
f_{ave} =& \frac{1}{8 \pi} \int^{32}_4 \sin u du
\\
\\
f_{ave} =& \frac{1}{8 \pi} [- \cos u]^{32}_4
\\
\\
f_{ave} =& \frac{1}{8 \pi} [- \cos (32) - (- \cos (4))]
\\
\\
f_{ave} =& -0.059

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...