Tuesday, November 29, 2011

12yy' - 7e^x = 0 Find the general solution of the differential equation

For the given problem: 12yy'-7e^x=0 , we can evaluate this by applying variable separable differential equation in which we express it in a form of f(y) dy = f(x)dx .
 Then, 12yy'-7e^x=0 can be rearrange into 12yy'= 7e^x
Express y'  as (dy)/(dx) :
12y(dy)/(dx)= 7e^x
Apply direct integration in the form of int f(y) dy = int f(x)dx :
12y(dy)/(dx)= 7e^x
12ydy= 7e^xdx
int12ydy= int 7e^x dx
For the both side , we apply basic integration property: int c*f(x)dx= c int f(x) dx
12 int ydy= 7int e^x dx
Applying Power Rule integration: int u^n du= u^(n+1)/(n+1) on the left side.
12int y dy= 12 *y^(1+1)/(1+1)
               = (12y^2)/2
               =6y^2
Apply basic integration formula for exponential function: int e^u du = e^u+C on the right side.
7int e^x dx = 7e^x+C
Combining the results for the general solution of differential equation:
6y^2=7e^x+C
or 
(6y^2)/6=(7e^x)/6+C
y^2 = (7e^x)/6+C
y = +-sqrt((7e^x)/6+C) 

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...