Sunday, November 27, 2011

Single Variable Calculus, Chapter 5, 5.4, Section 5.4, Problem 56

A particle moves along a line so that its velocity at time t is v(t)=t22t8 (measured in meters per second).
a.) Find the displacement of the particle during the time period 1t6 from the formula.

t2t1v(t)dt=s(t2)s(t1)t2t1v(t)dt=61(t22t8)dt(t22t8)dt=t2dt2tdt8dt(t22t8)dt=t2+12+12(t1+11+1)8(t0+10+1)(t22t8)dt=t33\cancel2t2\cancel28t(t22t8)dt=t33t28t61(t22t8)dt=(6)33(6)28(6)[(1)33(1)28(1)]61(t22t8)dt=2163364813+1+861(t22t8)dt=72364813+961(t22t8)dt=103 meters or 3.33 meters


This means the particle moved 3.33m toward the left.
b.) Find the distance traveled during this time period
Note that v(t) = t^2 - 2t - 8 = (t- 4)(t+2) and then (t-4)(t+2) = 0
t = 4 and t = -2
Only t = 4 is in the interval [1,6], thus, the distance traveled is...

\begin{equation} \begin{aligned} \int^6_1 |v(t) | dt &= \int^4_1 - v(t) dt + \int^6_4 v(t) dt\\ \\ \int^6_1 |v(t) | dt &= \int^4_1 \left( -t^2 + 2t + 8 \right) dt + \int^6_4 \left( t^2-2t - 8 \right) dt\\ \\ \int^6_1 |v(t) | dt &= \left[ -\frac{t^3}{3} + t^2 + 8t \right]^4_1 + \left[ \frac{t^3}{3} - t^2 - 8t \right]^6_4\\ \\ \int^6_1 |v(t) | dt &= \frac{-(4)^3}{3} + (4)^2 + 8 (4) - \left[ \frac{-(1)^3}{3} + (1)^2 + 8(1) \right] + \left[ \frac{(6)^3}{3} - (6) - 8(6) - \left[ \frac{(4)^3}{3} - (4)^2 - 8(4) \right] \right]\\ \\ \int^6_1 |v(t) | dt &= \frac{-64}{3} + 16 +32 + \frac{1}{3} - 1 - 8 + 72 - 36 - 48 - \frac{64}{3} + 16 + 32\\ \\ \int^6_1 |v(t) | dt &= \frac{98}{3} \text{ meters } \qquad \text{ or } \qquad \int^6_1 |v(t) | dt = 32.67 \text{ meters} \end{aligned} \end{equation}

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...