Sunday, November 27, 2011

Single Variable Calculus, Chapter 5, 5.4, Section 5.4, Problem 56

A particle moves along a line so that its velocity at time $t$ is $v(t) = t^2 - 2t - 8$ (measured in meters per second).
a.) Find the displacement of the particle during the time period $1 \leq t \leq 6$ from the formula.

$
\begin{equation}
\begin{aligned}
\int^{t_2}_{t_1} v(t) dt &= s (t_2) - s(t_1)\\
\\
\int^{t_2}_{t_1} v(t) dt &= \int^6_1 \left( t^2 - 2t - 8 \right) dt\\
\\
\int \left( t^2 - 2t - 8 \right) dt &= \int t^2 dt - 2 \int t d t - \int 8 dt\\
\\
\int \left( t^2 - 2t - 8 \right) dt &= \frac{t^{2+1}}{2+1} - 2 \left( \frac{t^{1+1}}{1+1} \right) - 8 \left( \frac{t^{0+1}}{0+1} \right)\\
\\
\int \left( t^2 - 2t - 8 \right) dt &= \frac{t^3}{3} - \frac{\cancel{2}t^2}{\cancel{2}} - 8t\\
\\
\int \left( t^2 - 2t - 8 \right) dt &= \frac{t^3}{3} - t^2 - 8t\\
\\
\int^6_1 \left( t^2 - 2t - 8 \right) dt &= \frac{(6)^3}{3} - (6)^2 - 8 (6) - \left[ \frac{(1)^3}{3} - (1)^2 - 8 (1) \right]\\
\\
\int^6_1 \left( t^2 - 2t - 8 \right) dt &= \frac{216}{3}-36-48-\frac{1}{3}+1+8\\
\\
\int^6_1 \left( t^2 - 2t - 8 \right) dt &= 72-36-48-\frac{1}{3}+9\\
\\
\int^6_1 \left( t^2 - 2t - 8 \right) dt &= \frac{-10}{3} \text{ meters or } -3.33 \text{ meters}
\end{aligned}
\end{equation}
$


This means the particle moved $3.33$m toward the left.
b.) Find the distance traveled during this time period
Note that $v(t) = t^2 - 2t - 8 = (t- 4)(t+2)$ and then $(t-4)(t+2) = 0$
$t = 4$ and $ t = -2$
Only $t = 4$ is in the interval $[1,6]$, thus, the distance traveled is...

$
\begin{equation}
\begin{aligned}
\int^6_1 |v(t) | dt &= \int^4_1 - v(t) dt + \int^6_4 v(t) dt\\
\\
\int^6_1 |v(t) | dt &= \int^4_1 \left( -t^2 + 2t + 8 \right) dt + \int^6_4 \left( t^2-2t - 8 \right) dt\\
\\
\int^6_1 |v(t) | dt &= \left[ -\frac{t^3}{3} + t^2 + 8t \right]^4_1 + \left[ \frac{t^3}{3} - t^2 - 8t \right]^6_4\\
\\
\int^6_1 |v(t) | dt &= \frac{-(4)^3}{3} + (4)^2 + 8 (4) - \left[ \frac{-(1)^3}{3} + (1)^2 + 8(1) \right] + \left[ \frac{(6)^3}{3} - (6) - 8(6) - \left[ \frac{(4)^3}{3} - (4)^2 - 8(4) \right] \right]\\
\\
\int^6_1 |v(t) | dt &= \frac{-64}{3} + 16 +32 + \frac{1}{3} - 1 - 8 + 72 - 36 - 48 - \frac{64}{3} + 16 + 32\\
\\
\int^6_1 |v(t) | dt &= \frac{98}{3} \text{ meters } \qquad \text{ or } \qquad \int^6_1 |v(t) | dt = 32.67 \text{ meters}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...