Suppose that a particle moves along a line with velocity function v(t)=t2−t, where v is measured in meters per second.
a.) Find the displacement of the particle during the time period 0≤t≤5.
∫t2t1v(t)dt=s(t2)−s(t1)∫t2t1v(t)dt=∫50(t2−t)dt∫50(t2−t)dt=∫50t2dt−∫50tdt∫50(t2−t)dt=[t2+12+1−t1+11+1]50∫50(t2−t)dt=[t33−t22]50∫50(t2−t)dt=(5)33−(5)22−(0)33+(0)22∫50(t2−t)dt=1253−252∫50(t2−t)dt=1756m∫50(t2−t)dt=29.17m
b.) Find the distance traveled during this time period
Note that v(t)=t2−t=t(t−1), and t(t−1)=0 then t=0 and t=1
∫50|v(t)|dt=∫50|t2−t|dt=∫10−(t2−t)dt+∫51(t2−t)dt∫50|v(t)|dt=∫50|t2−t|dt=∫10(−t2+t)dt+∫51(t2−t)dt∫50|v(t)|dt=∫50|t2−t|dt=[−t2+12+1+t1+11+1]10+[t2+12+1−t1+11+1]51∫50|v(t)|dt=∫50|t2−t|dt=[−t33+t22]10+[t33−t22]51∫50|v(t)|dt=∫50|t2−t|dt=[−(1)33+(1)22+(0)33−(0)22]+[(5)33−(5)22−(1)33+(1)22]∫50|v(t)|dt=∫50|t2−t|dt=−13+12+1253−252−13+12∫50|v(t)|dt=∫50|t2−t|dt=592m∫50|v(t)|dt=∫50|t2−t|dt=29.5m
No comments:
Post a Comment