Wednesday, June 26, 2019

Single Variable Calculus, Chapter 5, Review Exercises, Section Review Exercises, Problem 44

Suppose that a particle moves along a line with velocity function v(t)=t2t, where v is measured in meters per second.
a.) Find the displacement of the particle during the time period 0t5.

t2t1v(t)dt=s(t2)s(t1)t2t1v(t)dt=50(t2t)dt50(t2t)dt=50t2dt50tdt50(t2t)dt=[t2+12+1t1+11+1]5050(t2t)dt=[t33t22]5050(t2t)dt=(5)33(5)22(0)33+(0)2250(t2t)dt=125325250(t2t)dt=1756m50(t2t)dt=29.17m

b.) Find the distance traveled during this time period
Note that v(t)=t2t=t(t1), and t(t1)=0 then t=0 and t=1

50|v(t)|dt=50|t2t|dt=10(t2t)dt+51(t2t)dt50|v(t)|dt=50|t2t|dt=10(t2+t)dt+51(t2t)dt50|v(t)|dt=50|t2t|dt=[t2+12+1+t1+11+1]10+[t2+12+1t1+11+1]5150|v(t)|dt=50|t2t|dt=[t33+t22]10+[t33t22]5150|v(t)|dt=50|t2t|dt=[(1)33+(1)22+(0)33(0)22]+[(5)33(5)22(1)33+(1)22]50|v(t)|dt=50|t2t|dt=13+12+125325213+1250|v(t)|dt=50|t2t|dt=592m50|v(t)|dt=50|t2t|dt=29.5m

No comments:

Post a Comment