Determine the equation of the tangent line to the hyperbola x2a2−y2b2=1 at the point (x0,y0)
Taking the derivative of the curve implicitly we have...
1a2(2x)−1b2(2ydydx)=0dydx=xb2ya2
Using Point Slope Form
y−y0=m(x−x0)y−y0=xb2ya2(x−x0)
Multiplying yb2 or both sides of the equation we have
yb2(y−y0)=xa2(x−x0)y2b2−yy0b2=x2a2−xx0a2xx0a2−yy0b2=x2a2−y2b2
From the given equation, we know that (x2a2−y2b2)=1 so
xx0a2−yy0b2=1
Hence, the equation of the tangent line at point (x0,y0)
No comments:
Post a Comment