Find the intercepts of the equation $y = x^3 - x$ and test for symmetry with respect to the $x$-axis, the $y$-axis and the origin.
$x$-intercepts
$
\begin{equation}
\begin{aligned}
y =& x^3 - x
&& \text{Given equation}
\\
0 =& x^3 - x
&& \text{To find the $x$-intercept, we let $y = 0$ and solve for $x$}
\\
0 =& (x^2 - 1)x
&&
\\
0 =& (x + 1)(x- 1)x
&&
\\
x =& -1, x = 1 \text{ and } x = 0
&&
\end{aligned}
\end{equation}
$
The $x$-intercepts are $(-1,0), (1,0)$ and $(0,0)$
$y$-intercepts
$
\begin{equation}
\begin{aligned}
y =& x^3 - x
&& \text{Given equation}
\\
y =& (0)^3 - 0
&& \text{To find the $y$-intercept, we let $x = 0$ and solve for $y$}
\\
y =& 0
&&
\end{aligned}
\end{equation}
$
The $y$-intercept is $(0,0)$.
Test for symmetry
$x$-axis
$
\begin{equation}
\begin{aligned}
y =& x^3 - x
&& \text{Given equation}
\\
-y =& x^3 - x
&& \text{To test for $x$-axis symmetry, replace $y$ by $-y$ and see if the equation is still the same}
\end{aligned}
\end{equation}
$
The equation changes so the equation is not symmetric to $x$-axis.
$y$-axis
$
\begin{equation}
\begin{aligned}
y =& x^3 - x
&& \text{Given equation}
\\
y =& (-x)^3 - (-x)
&& \text{To test for $y$-axis symmetry, replace$ x$ by $-x$ and see if the equation is still the same}
\\
y =& -x^3 + x
&&
\end{aligned}
\end{equation}
$
The equation changes so the equation is not symmetric to $y$-axis.
Origin
$
\begin{equation}
\begin{aligned}
y =& x^3 - x
&& \text{Given equation}
\\
-y =& (-x)^3 - (-x)
&& \text{To test for origin symmetry, replace both $x$ by $-x$ and y by $-y$ and see if the equation is still the same}
\\
-y =& -x^3 + x
&&
\\
-y =& -(x^3 - x)
&&
\\
y =& x^3 - x
\end{aligned}
\end{equation}
$
The equation is still the same so it is symmetric to the origin.
No comments:
Post a Comment