Friday, June 7, 2019

Precalculus, Chapter 1, 1.2, Section 1.2, Problem 58

Find the intercepts of the equation $y = \sqrt[5]{x}$ and test for symmetry.

$x$-intercepts:


$
\begin{equation}
\begin{aligned}

y =& \sqrt[5]{x}
&& \text{Given equation}
\\
0 =& \sqrt[5]{x}
&& \text{To find the $x$-intercept, we let } y = 0
\\
0 =& x
&&

\end{aligned}
\end{equation}
$



The $x$-intercept is $(0,0)$

$y$-intercepts:


$
\begin{equation}
\begin{aligned}

y =& \sqrt[5]{x}
&& \text{Given equation}
\\
y =& \sqrt[5]{0}
&& \text{To find the $y$-intercept, we let } x = 0

\\
y =& 0
&&

\end{aligned}
\end{equation}
$


The $y$-intercept is $(0,0)$

Test for symmetry

$x$-axis:


$
\begin{equation}
\begin{aligned}

y =& \sqrt[5]{x}
&& \text{Given equation}
\\
-y =& \sqrt[5]{x}
&& \text{To test for $x$-axis symmetry, replace $y$ by $-y$ and see if the equation is still the same}


\end{aligned}
\end{equation}
$


The equation changes so it is not symmetric to the $x$-axis

$y$-axis:


$
\begin{equation}
\begin{aligned}

y =& \sqrt[5]{x}
&& \text{Given equation}
\\
y =& \sqrt[5]{-x}
&& \text{To test for $y$-axis symmetry, replace$ x$ by $-x$ and see if the equation is still the same}
\\
y =& - \sqrt[5]{x}
&&

\end{aligned}
\end{equation}
$


The equation changes so it is not symmetric to the $y$-axis

Origin:


$
\begin{equation}
\begin{aligned}

y =& \sqrt[5]{x}
&& \text{Given equation}
\\
-y =& \sqrt[5]{-x}
&& \text{To test for origin symmetry, replace both $x$ by $-x$ and y by $-y$ and see if the equation is still the same}
\\
-y =& - \sqrt[5]{x}
&&
\\
y =& \sqrt[5]{x}
&&

\end{aligned}
\end{equation}
$


The equation is still the same so it is symmetric to the origin.

Therefore, the equation $y = \sqrt[5]{x}$ has an intercepts $(0,0)$ and it is symmetric to the origin.

No comments:

Post a Comment