Saturday, October 13, 2018

Single Variable Calculus, Chapter 7, 7.2-2, Section 7.2-2, Problem 48

Find y if lnxy=ysinx.


if y=lnxy=ysinx, then by taking the derivative implicitly we have.. ddx(xy)xy=ddx(ysinx)xddy(y)dydx+y(1)xy=ycosx+sinxddy(y)dydxxdydx+yxy=ycosx+sinxdydxxdydx+y=xy2cosx+xysinxdydxyxy2cosx=xysinxdydxxdydxy(1xycosx)=x(ysinx1)dydxdydx=y(1xycosx)x(ysinx1)


Recall that the first derivative is equal to the slope of the tangent line at some point.

Thus, at point (2,0),


y=3(2)2237y=12


Therefore, the equation of the tangent line to the curve can be determined by using the point slope form.


yy1=m(xx1)y0=12(x2)y=12x24

No comments:

Post a Comment