Find y′ if lnxy=ysinx.
if y=lnxy=ysinx, then by taking the derivative implicitly we have.. ddx(xy)xy=ddx(ysinx)x⋅ddy(y)dydx+y(1)xy=ycosx+sinx⋅ddy(y)dydxxdydx+yxy=ycosx+sinxdydxxdydx+y=xy2cosx+xysinxdydxy−xy2cosx=xysinxdydx−xdydxy(1−xycosx)=x(ysinx−1)dydxdydx=y(1−xycosx)x(ysinx−1)
Recall that the first derivative is equal to the slope of the tangent line at some point.
Thus, at point (2,0),
y′=3(2)223−7y′=12
Therefore, the equation of the tangent line to the curve can be determined by using the point slope form.
y−y1=m(x−x1)y−0=12(x−2)y=12x−24
No comments:
Post a Comment