Find $y'$ if $\ln x y = y \sin x$.
$
\begin{equation}
\begin{aligned}
& \text{if } y = \ln xy = y \sin x, \text{ then by taking the derivative implicitly we have.. }
\\
\\
& \frac{\displaystyle \frac{d}{dx} (xy) }{xy} = \frac{d}{dx} (y \sin x)
\\
\\
& \frac{\displaystyle x \cdot \frac{d}{dy} (y) \frac{dy}{dx} + y(1) }{xy} = y \cos x + \sin x \cdot \frac{d}{dy} (y) \frac{dy}{dx}
\\
\\
& \frac{\displaystyle x \frac{dy}{dx} + y}{xy} = y \cos x + \sin x \frac{dy}{dx}
\\
\\
& x \frac{dy}{dx} + y = xy^2 \cos x+ xy \sin x \frac{dy}{dx}
\\
\\
& y - xy^2 \cos x = xy \sin x \frac{dy}{dx} - x \frac{dy}{dx}
\\
\\
& y (1 - xy \cos x) = x (y \sin x - 1) \frac{dy}{dx}
\\
\\
& \frac{dy}{dx} = \frac{y (1 - xy \cos x)}{x (y \sin x - 1)}
\end{aligned}
\end{equation}
$
Recall that the first derivative is equal to the slope of the tangent line at some point.
Thus, at point $(2, 0)$,
$
\begin{equation}
\begin{aligned}
y' =& \frac{3(2)^2}{2^3 - 7}
\\
\\
y' =& 12
\end{aligned}
\end{equation}
$
Therefore, the equation of the tangent line to the curve can be determined by using the point slope form.
$
\begin{equation}
\begin{aligned}
y - y_1 =& m (x - x_1)
\\
\\
y - 0 =& 12 (x - 2)
\\
\\
y =& 12 x - 24
\end{aligned}
\end{equation}
$
No comments:
Post a Comment