Find limx→2√6−x−2√3−x−1
limx→2√6−x−2√3−x−1⋅√6−x+2√6−x+2=limx→26−x−4(√3−x−1)(√6−x+2) Multiply both numerator and denominator by √6−x+2 and simplify.limx→22−x(√3−x−1)(√6−x+2)⋅√3−x+1√3−x+1=limx→2(2−x)(√3−x+1)(3−x−1)(√6−x+2) Multiply both numerator and denominator by √3−x+1 and simplify.limx→2√3−x+1√6−x+2=√3−2+1√6−2+2=√1+1√4+2=24=12 Substitute the value of x and simplifylimx→2√6−x−2√3−x−1=12
No comments:
Post a Comment