a.) Given the function f(x)=x4−3x3+3x2−x,0≤x≤2, use a graph to estimate the absolute maximum and minimum values.
b.) Use calculus to find the exact maximum and minimum values.
a.)
Based from the graph, the absolute maximum is approximately at f(2)≈2. While the absolute minimum is approximately at f(0.2)≈−0.15
b.) To find the exact value, we take the derivative of the function
f′(x)=ddx(x4)−3ddx(x3)+3ddx(x2)−ddx(x)
f′(x)=4x3−9x2+6x−1
When f′(x)=0
0=4x3−9x2+6x−1
By factoring we get,
(4x−1)(x−1)2=0
So,
x=14 and x=1
When 14,
f(14)=(14)4−3(14)3+3(14)2−(14)
f(14)=−0.1055
When x=1,
f(1)=(1)4−3(1)3+3(1)2−(1)
f(1)=0
Also, we evaluate f(x) with the end points of x=0 and x=2
So when x=0,
f(0)=(0)4−3(0)3+3(0)2−(0)
f(0)=0
when x=2,
f(2)=(2)4−3(2)3+3(2)2−(2)
f(2)=2
Therefore, the exact value of the absolute maximum and minimum values are f(2)=2 and f(14)=−0.1055 respectively.
No comments:
Post a Comment