Suppose that the model for the length of daylight (in hours) in Philadelphia on the tth day of the year us $L(t) = 12 + 2.8 \sin \displaystyle \left[ \frac{d \pi}{365} (t -80) \right]$. Use this model to compare how the number of hours of daylight is increasing in Philadelphia on March 21 and May 21.
$
\begin{equation}
\begin{aligned}
\frac{dL}{dt} =& 2.8 \cos \left[ \frac{2 \pi}{365} (t - 80) \right] \left( \frac{2 \pi}{365} \right)
\\
\\
\frac{dL}{dt} =& \frac{5.6 \pi}{365} \cos \left[ \frac{2 \pi}{365} (t - 80) \right]
\\
\\
& \text{On March 21, the 80th day of the year,}
\\
\\
\frac{dL}{dt} =& \frac{5.6 \pi}{365} \cos \left[ \frac{2 \pi}{365} (80 - 80) \right]
\\
\\
\frac{dL}{dt} =& 0.0482 \text{ hours/ day}
\\
\\
& \text{On May 21, the 141st day of the year,}
\\
\\
\frac{dL}{dt} =& \frac{5.6 \pi}{365} \cos \left[ \frac{2 \pi}{365} (141 - 80) \right]
\\
\\
\frac{dL}{dt} =& 0.0240 \text{ hours/day }
\end{aligned}
\end{equation}
$
No comments:
Post a Comment