Saturday, December 23, 2017

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 49

Find the equation of the tangent line of the curve y=2xx+1 at Point (1,1)

Required:

Equation of the tangent line to the curve at P(1,1)

Solution:

Let y=m (slope)


y=m=(x+1)ddx(2x)[(2x)ddx(x+1)](x+1)2Apply Quotient Rulem=(x+1)(2)(2x)(1)(x+1)2Simplify the equationm=\cancel2x+2\cancel2x(x+1)2Combine like termsm=2(x+1)2Substitute value of x which is 1m=2(1+1)2m=24Reduce to lowest termm=12


Solving for the equation of the tangent line:


yy1=m(xx1)Substitute the value of the slope (m) and the given pointy1=12(x1)Add 1 to each sidey=x12+1Get the LCDy=x1+22Combine like termsy=x+12Equation of the tangent line to the curve at P(1,1)

No comments:

Post a Comment