Determine $\displaystyle \lim \limits_{v \to 4^+} \frac{4 - v}{| 4 - v|}$
Recall
$
\begin{equation}
\begin{aligned}
|x| =& \left\{ \begin{array}{ccc}
x & \text{ if } & x \geq 0 \\
-x & \text{ if } & x < 0
\end{array} \right.
\end{aligned}
\end{equation}
$
So,
$
\begin{equation}
\begin{aligned}
|4 - v| =& \left\{ \begin{array}{ccc}
-(4-v) & \text{ if } & v \geq 4 \\
(4-v) & \text{ if } & v < 4
\end{array} \right.
\end{aligned}
\end{equation}
$
Since $v$ approaches 4 from the right-hand limit. We use $-(4 - v)$ to eliminate the absolute sign.
$
\begin{equation}
\begin{aligned}
\lim \limits_{v \to 4^+} \frac{4 - v}{| 4 - v|} &= \lim \limits_{v \to 4^+} \frac{\cancel{4 - v}}{-\cancel{(4 - v)}} = \frac{1}{-1}
&& \text{Cancel out like terms}
\\
\\
& \fbox{$= -1$}
&&
\end{aligned}
\end{equation}
$
No comments:
Post a Comment