Tuesday, June 27, 2017

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 28

Determine the integral tan3(2x)sec5(2x)dx

Let u=2x, then du=2dx, so dx=du2. Thus,


tan3(2x)sec5(2x)dx=tan3usec5udu2tan3(2x)sec5(2x)dx=12tan3usec5udutan3(2x)sec5(2x)dx=12tan2usec4usecutanuduApply Trigonometric Identity sec2u=tan2u+1 for tan2utan3(2x)sec5(2x)dx=12(sec2u1)sec4usecutanudutan3(2x)sec5(2x)dx=12(sec6usec4u)secutanudu


Let v=secu, then dv=secutanudu. Thus,


12(sec6usec4u)secutanudu=12(v6v4)dv12(sec6usec4u)secutanudu=12(v6+16+1v4+14+1)+c12(sec6usec4u)secutanudu=12(v77v55)+c12(sec6usec4u)secutanudu=v714v510+cSubstitute value of v12(sec6usec4u)secutanudu=(secu)714(secu)510+c12(sec6usec4u)secutanudu=sec7u14sec5u10+cSubstitute value of u12(sec6usec4u)secutanudu=sec7(2x)14sec5(2x)10+c

No comments:

Post a Comment