Determine the integral ∫tan3(2x)sec5(2x)dx
Let u=2x, then du=2dx, so dx=du2. Thus,
∫tan3(2x)sec5(2x)dx=∫tan3usec5u⋅du2∫tan3(2x)sec5(2x)dx=12∫tan3usec5udu∫tan3(2x)sec5(2x)dx=12∫tan2usec4usecutanuduApply Trigonometric Identity sec2u=tan2u+1 for tan2u∫tan3(2x)sec5(2x)dx=12∫(sec2u−1)sec4usecutanudu∫tan3(2x)sec5(2x)dx=12∫(sec6u−sec4u)secutanudu
Let v=secu, then dv=secutanudu. Thus,
12∫(sec6u−sec4u)secutanudu=12∫(v6−v4)dv12∫(sec6u−sec4u)secutanudu=12(v6+16+1−v4+14+1)+c12∫(sec6u−sec4u)secutanudu=12(v77−v55)+c12∫(sec6u−sec4u)secutanudu=v714−v510+cSubstitute value of v12∫(sec6u−sec4u)secutanudu=(secu)714−(secu)510+c12∫(sec6u−sec4u)secutanudu=sec7u14−sec5u10+cSubstitute value of u12∫(sec6u−sec4u)secutanudu=sec7(2x)14−sec5(2x)10+c
No comments:
Post a Comment