Estimate ∫π20cos4xdx,n=4 using Midpoint Rule
The width of each sub-intervals is given to be Δx=π2−04=π8. So the endpoints of the four sub-intervals are 0,π8,π4,3π8 and π2. Thus, the midpoints are (0+π82)=π16,(π8+π42)=3π16,(π4+3π82)=5π16,(3π8+π2)=7π16.
Therefore, the Midpoint Rule gives..
∫π20cos4xdx≈Δx[f(π16)+f(3π16)+f(5π16)+f(7π16)]≈π8[0.9253+0.4780+0.0953+0.0014]≈0.5891
No comments:
Post a Comment