Monday, June 26, 2017

Single Variable Calculus, Chapter 7, 7.8, Section 7.8, Problem 62

Determine the limx1(2x)tan(πx/2). Use L'Hospital's Rule where appropriate. Use some Elementary method if posible. If L'Hospitals Rule doesn't apply. Explain why.

If we let y=(2x)tan(πx/2), then

lny=tan(πx2)[ln(2x)]
So,
limx1lny=limx1tan(πx2)[ln(2x)]
limx1tan(πx2)[ln(2x)]=limx1ln(2x)cot(πx2)

By applying L'Hospital's Rule...

limx1ln(2x)cot(πx2)=limx112xcsc2(πx2)π2=limx12π(2x)csc2(πx2)=2πlimx11(2x)(1sin2(πx2))=2πlimx1sin2(πx2)(2x)=2πsin2(π(1)2)21=2π(sinπ2)21=2π11=2π

Thus, limx1lny=limx1tan(πx2)[ln(2x)]=2π
Therefore, we have

limx1(2x)tan(πx/2)=limx1elny=e2/π

No comments:

Post a Comment