Determine the limx→1(2−x)tan(πx/2). Use L'Hospital's Rule where appropriate. Use some Elementary method if posible. If L'Hospitals Rule doesn't apply. Explain why.
If we let y=(2−x)tan(πx/2), then
lny=tan(πx2)[ln(2−x)]
So,
limx→1lny=limx→1tan(πx2)[ln(2−x)]
limx→1tan(πx2)[ln(2−x)]=limx→1ln(2−x)cot(πx2)
By applying L'Hospital's Rule...
limx→1ln(2−x)cot(πx2)=limx→1−12−x−csc2(πx2)⋅π2=limx→12π(2−x)csc2(πx2)=2πlimx→11(2−x)(1sin2(πx2))=2πlimx→1sin2(πx2)(2−x)=2π⋅sin2(π(1)2)2−1=2π⋅(sinπ2)21=2π⋅11=2π
Thus, limx→1lny=limx→1tan(πx2)[ln(2−x)]=2π
Therefore, we have
limx→1(2−x)tan(πx/2)=limx→1elny=e2/π
No comments:
Post a Comment