Monday, June 26, 2017

Single Variable Calculus, Chapter 7, 7.8, Section 7.8, Problem 62

Determine the limx1(2x)tan(πx/2). Use L'Hospital's Rule where appropriate. Use some Elementary method if posible. If L'Hospitals Rule doesn't apply. Explain why.

If we let y=(2x)tan(πx/2), then

lny=tan(πx2)[ln(2x)]
So,
limx1lny=limx1tan(πx2)[ln(2x)]
limx1tan(πx2)[ln(2x)]=limx1ln(2x)cot(πx2)

By applying L'Hospital's Rule...

limx1ln(2x)cot(πx2)=limx112xcsc2(πx2)π2=limx12π(2x)csc2(πx2)=2πlimx11(2x)(1sin2(πx2))=2πlimx1sin2(πx2)(2x)=2πsin2(π(1)2)21=2π(sinπ2)21=2π11=2π

Thus, limx1lny=limx1tan(πx2)[ln(2x)]=2π
Therefore, we have

limx1(2x)tan(πx/2)=limx1elny=e2/π

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...