Determine ∫sinxcosxdx by four methods.
a.) The substitution u=cosx
If u=cosx, then du=−sinxdx, so sinxdx=−du. Thus,
∫sinxcosxdx=∫u⋅−du∫sinxcosxdx=−∫udu∫sinxcosxdx=−(u1+11+1)+c∫sinxcosxdx=−u22+c∫sinxcosxdx=−(cosx)22+c∫sinxcosxdx=−cos2x2+c
b.) The substitution u=sinx
If u=sinx, then du=cosxdx. Thus,
∫sinxcosxdx=∫udu∫sinxcosxdx=u1+11+1+c∫sinxcosxdx=u22+c∫sinxcosxdx=(sinx)22+c∫sinxcosxdx=sin2x2+c
c.) The identity sin2x=2sinxcosx
Using the identity sin2x=2sinxcosx,
∫sinxcosxdx=∫sin2x2dx∫sinxcosxdx=12∫sin2xdx
Let u=2x, then du=2dx, so dx=du2. Thus,
∫sinxcosxdx=12∫sinu⋅du2∫sinxcosxdx=14∫sinudu∫sinxcosxdx=14(−cosu)+c∫sinxcosxdx=−14cosu+c∫sinxcosxdx=−14cos2x+c
d.) Integration by parts
Let u=sinx, then du=cosxdx and v=sinx, then dv=cosxdx
∫sinxcosxdx=uv−∫vdu∫sinxcosxdx=sinxsinx−∫sinxcosxdx∫sinxcosxdx=sin2x−∫sinxcosxdxCombine Like Terms∫sinxcosxdx+∫sinxcosxdx=sin2x2∫sinxcosxdx=sin2x∫sinxcosxdx=sin2x2+c
Explain the different appearances of the answers.
Although the answers have different appearances, if we simplify each answer by using trigonometric identities, it will have the same result.
No comments:
Post a Comment