Saturday, September 12, 2015

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 56

Determine sinxcosxdx by four methods.
a.) The substitution u=cosx
If u=cosx, then du=sinxdx, so sinxdx=du. Thus,

sinxcosxdx=udusinxcosxdx=udusinxcosxdx=(u1+11+1)+csinxcosxdx=u22+csinxcosxdx=(cosx)22+csinxcosxdx=cos2x2+c


b.) The substitution u=sinx
If u=sinx, then du=cosxdx. Thus,

sinxcosxdx=udusinxcosxdx=u1+11+1+csinxcosxdx=u22+csinxcosxdx=(sinx)22+csinxcosxdx=sin2x2+c


c.) The identity sin2x=2sinxcosx
Using the identity sin2x=2sinxcosx,

sinxcosxdx=sin2x2dxsinxcosxdx=12sin2xdx

Let u=2x, then du=2dx, so dx=du2. Thus,

sinxcosxdx=12sinudu2sinxcosxdx=14sinudusinxcosxdx=14(cosu)+csinxcosxdx=14cosu+csinxcosxdx=14cos2x+c


d.) Integration by parts
Let u=sinx, then du=cosxdx and v=sinx, then dv=cosxdx

sinxcosxdx=uvvdusinxcosxdx=sinxsinxsinxcosxdxsinxcosxdx=sin2xsinxcosxdxCombine Like Termssinxcosxdx+sinxcosxdx=sin2x2sinxcosxdx=sin2xsinxcosxdx=sin2x2+c

Explain the different appearances of the answers.
Although the answers have different appearances, if we simplify each answer by using trigonometric identities, it will have the same result.

No comments:

Post a Comment