Determine $\displaystyle \int \sin x \cos x dx$ by four methods.
a.) The substitution $u = \cos x$
If $ u = \cos x$, then $du = -\sin xdx$, so $\sin xdx = - du$. Thus,
$
\begin{equation}
\begin{aligned}
\int \sin x \cos x dx &= \int u \cdot - du\\
\\
\int \sin x \cos x dx &= - \int u du\\
\\
\int \sin x \cos x dx &= -\left( \frac{u^{1+1}}{1+1} \right) + c\\
\\
\int \sin x \cos x dx &= \frac{-u^2}{2} + c \\
\\
\int \sin x \cos x dx &= -\frac{(\cos x)^2}{2} + c\\
\\
\int \sin x \cos x dx &= -\frac{\cos^2 x }{2} + c
\end{aligned}
\end{equation}
$
b.) The substitution $u = \sin x$
If $u = \sin x$, then $du = \cos xdx$. Thus,
$
\begin{equation}
\begin{aligned}
\int \sin x \cos x dx &= \int u du \\
\\
\int \sin x \cos x dx &= \frac{u^{1+1}}{1+1} + c\\
\\
\int \sin x \cos x dx &= \frac{u^2}{2} + c\\
\\
\int \sin x \cos x dx &= \frac{(\sin x)^2}{2} + c\\
\\
\int \sin x \cos x dx &= \frac{\sin^2 x}{2} + c
\end{aligned}
\end{equation}
$
c.) The identity $\sin 2x = 2 \sin x \cos x$
Using the identity $\sin 2x = 2 \sin x \cos x$,
$
\begin{equation}
\begin{aligned}
\int \sin x \cos x dx &= \int \frac{\sin 2x}{2} dx\\
\\
\int \sin x \cos x dx &= \frac{1}{2} \int \sin 2x dx
\end{aligned}
\end{equation}
$
Let $u = 2x$, then $du = 2 dx$, so $\displaystyle dx = \frac{du}{2}$. Thus,
$
\begin{equation}
\begin{aligned}
\int \sin x \cos x dx &= \frac{1}{2} \int \sin u \cdot \frac{du}{2}\\
\\
\int \sin x \cos x dx &= \frac{1}{4} \int \sin u du\\
\\
\int \sin x \cos x dx &= \frac{1}{4} (- \cos u) + c\\
\\
\int \sin x \cos x dx &= \frac{-1}{4} \cos u + c\\
\\
\int \sin x \cos x dx &= \frac{-1}{4} \cos 2 x + c
\end{aligned}
\end{equation}
$
d.) Integration by parts
Let $u = \sin x$, then $du = \cos x dx$ and $v = \sin x$, then $dv = \cos x dx$
$
\begin{equation}
\begin{aligned}
\int \sin x \cos x dx &= uv - \int v du\\
\\
\int \sin x \cos x dx &= \sin x \sin x - \int \sin x \cos x dx\\
\\
\int \sin x \cos x dx &= \sin^2 x - \int \sin x \cos x dx && \text{Combine Like Terms}\\
\\
\int \sin x \cos x dx + \int \sin x \cos x dx &= \sin^2 x\\
\\
2 \int \sin x \cos x dx &= \sin^2 x\\
\\
\int \sin x \cos x dx &= \frac{\sin^2 x}{2} + c
\end{aligned}
\end{equation}
$
Explain the different appearances of the answers.
Although the answers have different appearances, if we simplify each answer by using trigonometric identities, it will have the same result.
Saturday, September 12, 2015
Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 56
Subscribe to:
Post Comments (Atom)
Why is the fact that the Americans are helping the Russians important?
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
Lionel Wallace is the subject of most of "The Door in the Wall" by H.G. Wells. The narrator, Redmond, tells about Wallace's li...
-
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
There are a plethora of rules that Jonas and the other citizens must follow. Again, page numbers will vary given the edition of the book tha...
-
Robinson Crusoe, written by Daniel Defoe, is a novel. A novel is a genre defined as a long imaginative work of literature written in prose. ...
-
The poem contrasts the nighttime, imaginative world of a child with his daytime, prosaic world. In the first stanza, the child, on going to ...
-
Friar Lawrence plays a significant role in Romeo and Juliet's fate and is responsible not only for secretly marrying the two lovers but ...
-
Hello! This expression is already a sum of two numbers, sin(32) and sin(54). Probably you want or express it as a product, or as an expressi...
No comments:
Post a Comment