Saturday, July 12, 2014

Single Variable Calculus, Chapter 3, 3.2, Section 3.2, Problem 25

Find the derivative of $\displaystyle G(t) = \frac{4t}{t + 1}$ using the definition and the domain of its derivative.

Using the definition of derivative


$
\begin{equation}
\begin{aligned}

\qquad G'(t) &= \lim_{h \to 0} \frac{g(t + h) - G(t)}{h}
&&
\\
\\
\qquad G'(t) &= \lim_{h \to 0} \frac{\displaystyle \frac{4(t + h)}{t + h + 1} - \frac{4t}{t + 1}}{h}
&& \text{Substitute $G(t + h)$ and $G(t)$}
\\
\\
\qquad G'(t) &= \lim_{h \to 0} \frac{(4t + 4h)(t + 1) - (4t)(t + h + 1)}{(h)(t + h + 1)(t + 1)}
&& \text{Get the LCD of the numerator}
\\
\\
\qquad G'(t) &= \lim_{h \to 0} \frac{\cancel{4t^2} + \cancel{4t} + \cancel{4th} + 4h - \cancel{4t^2} - \cancel{4th} - \cancel{4t}}{(h)(t + h + 1)(t + 1)}
&& \text{Expand and combine like terms}
\\
\\
\qquad G'(t) &= \lim_{h \to 0} \frac{4\cancel{h}}{\cancel{(h)} (t + h + 1)(t + 1)}
&& \text{Cancel out like terms}
\\
\\
\qquad G'(t) &= \lim_{h \to 0} \frac{4}{(t + h + 1)(t + 1)} = \frac{4}{(t + h + 1)(t + 1)} = \frac{4}{(t + 0 + 1)(t + 1)}
&& \text{Evaluate the limit}


\end{aligned}
\end{equation}
$


$\qquad \fbox{$G'(t) = \displaystyle \frac{4}{(t + 1)^2}$}$

Both functions are continuous on $0 > t + 1 > 0$.

$\displaystyle \begin{array}{ccc}
0 > & t + 1 & c \\
t > & -1 & \text{and } t > -1
\end{array} $

Therefore,

The domain of $G(t) = \displaystyle \frac{4t}{t + 1}$ is $(- \infty, -1)$

The domain of $G'(t) = \displaystyle \frac{4}{(t + 1)^2}$ is $(-\infty, -1) \bigcup (-1, \infty)$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...