Monday, July 28, 2014

College Algebra, Chapter 2, 2.5, Section 2.5, Problem 36

Suppose that the stopping distance $D$ of a car after the breaches have been applied varies directly as the square of the speed $s$. A certain car travelling at $\displaystyle 50 \frac{\text{mi}}{\text{h}}$ can stop in 240 ft. What is the maximum speed it can be travelling if it needs to stop in 160ft?

$
\begin{equation}
\begin{aligned}
D &= ks ^2 && \text{Model}\\
\\
240 \text{ft} \times \frac{1 \text{mile}}{5280 \text{ft}} &= k \left( 50 \frac{\text{mi}}{\text{h}} \right)^2 && \text{Substitute the given and convert ft into miles}\\
\\
\frac{1}{22} \text{mi} &= k \left(2500 \frac{\text{mi}^2}{\text{h}^2} \right) && \text{Simplify}\\
\\
k &= \frac{\frac{1}{22}\text{mi}}{2500 \frac{\text{mi}^2}{\text{h}^2}}\\
\\
k &= \frac{1}{55000} \frac{\text{h}^2}{\text{mi}}
\end{aligned}
\end{equation}
$


Then if,

$
\begin{equation}
\begin{aligned}
D &= 160 \text{ft},\\
\\
D &= ks^2\\
\\
160 \text{ft} \times \frac{1 \text{mile}}{5280 \text{ft}} &= \frac{1}{55000} \frac{\text{h}^2}{\text{mi}} (s^2) && \text{Solve for }s \\
\\
\frac{1}{33} \text{mi} &= \frac{1}{55000} \frac{\text{h}^2}{\text{mi}} (s^2)\\
\\
s^2 &= \frac{55000}{33} \frac{\text{mi}^2}{\text{h}^2} && \text{Take the square root}\\
\\
s &= \frac{50\sqrt{6}}{3} \frac{\text{mi}}{\text{h}}
\end{aligned}
\end{equation}
$


It shows that if the car needs to stop in 160ft. Its speed must be a maximum of $\displaystyle \frac{50\sqrt{6}}{3} \frac{\text{mi}}{\text{h}}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...