Saturday, July 12, 2014

Calculus of a Single Variable, Chapter 8, 8.4, Section 8.4, Problem 24

int1/sqrt(x^2-4)dx
Let's apply integral substitution:x=2sec(u)
=>dx=2sec(u)tan(u)du
=int1/sqrt((2sec(u))^2-4)2sec(u)tan(u)du
=int(2sec(u)tan(u))/sqrt(4sec^2(u)-4)du
=int(2secutan(u))/(sqrt(4)sqrt(sec^2(u)-1))du
Now use the trigonometric identity: tan^2(x)=sec^2(x)-1
=int(2sec(u)tan(u))/(2sqrt(tan^2(u)))du
=intsec(u)du
Now use the standard integral:intsec(x)dx=ln|sec(x)+tan(x)|
=ln|sec(u)+tan(u)| ----------(1)
Now from the substitution:
sec(u)=x/2 and,
tan^2(u)=sec^2(u)-1
tan^2(u)=(x/2)^2-1
tan^2(u)=(x^2-4)/4
tan(u)=sqrt(x^2-4)/2
Substitute back the above in the result (1)
=ln|x/2+sqrt(x^2-4)/2|
=ln|(x+sqrt(x^2-4))/2|
=ln|x+sqrt(x^2-4)|-ln(2)
Since ln(2) is constant, so we can omit it and add a new constant C to the solution,
=ln|x+sqrt(x^2-4)|+C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...