Suppose that a box with an open top is to be constructed from a square piece of cardboard, 3 $ft$ wide, by cutting out a square from each of the four corners. Find the largest volume that such a box can have.
	
    
    
    The volume = $x (3-2x)(3-2x) = x(3-2x)^2$
	If we take the derivative of the volume by using Product and Chain Rule,
	
	$
	\begin{equation}
	\begin{aligned}
		v' &= x\left( 2(3-2x)(-2) \right) + (3-2x)^2 (1)\\
        \\
        v' &= (3-2x) [-4x + (3-2x)]\\
        \\
        v' &= (3-2x) [3-6x]\\
        \\
        v' &= 9 - 18x - 6x + 12x^2\\
        \\
        v' &= 12x^2 - 24x + 9
    \end{aligned}
	\end{equation}
	$
	
	when $v' = 0$,
    $0 = 12x^2 - 24x + 9$
    Using Quadratic Formula, we have
    $\displaystyle x = \frac{3}{2}ft \text{ and } x = \frac{1}{2} ft$
    
    Let us determine on which dimension will the volume be larger.
	
	$
	\begin{equation}
	\begin{aligned}
    	\text{so when } x &= \frac{3}{2} ft, &&& \text{when } x &= \frac{1}{2} ft,\\
        \\
        v \left( \frac{3}{2} \right) &= \frac{3}{2} \left(3-2 \left(\frac{3}{2}\right) \right)^2 &&& v \left( \frac{1}{2} \right) &=  \frac{1}{2} \left(3-2 \left(\frac{1}{2}\right) \right)^2\\
        \\
        v \left( \frac{3}{2} \right) &= 0 ft^3 &&& v \left( \frac{1}{2} \right) &= 2ft^3
	\end{aligned}
	\end{equation}
	$
	    
    Therefore, the olume will be largest at $\displaystyle x = \frac{1}{2}ft$
No comments:
Post a Comment