Determine dydx for y=√7−3u and u=x2−9.
We have dydx=dydu⋅dudx with
dydu=12(7−3u)−12⋅ddu(7−3u) and dudx=ddx(x2)−ddx(9)=12(7−3u)−12(−3)=2x=−32(7−3u)12
Thus,
dydx=−32(7−3u)12⋅2x=−3x(7−3u)12=−3x[7−3(x2−9)]12Substitute x2−9 for u=−3x(7−3x2+27)12=−3x(34−3x2)12
No comments:
Post a Comment