Wednesday, January 29, 2014

Calculus and Its Applications, Chapter 1, 1.7, Section 1.7, Problem 54

Determine dydx for y=73u and u=x29.

We have dydx=dydududx with


dydu=12(73u)12ddu(73u) and dudx=ddx(x2)ddx(9)=12(73u)12(3)=2x=32(73u)12



Thus,


dydx=32(73u)122x=3x(73u)12=3x[73(x29)]12Substitute x29 for u=3x(73x2+27)12=3x(343x2)12

No comments:

Post a Comment