Sunday, October 27, 2013

Precalculus, Chapter 7, 7.4, Section 7.4, Problem 33

Decompose the denominator:
x^3-x^2-2x+2=x^2(x-1)-2(x-1)=(x^2-2)(x-1)=(x-1)(x-sqrt(2))(x+sqrt(2)).
Therefore the fraction decomposition has the form
x/(x^3-x^2-2x+2)=A/(x-1)+B/(x-sqrt(2))+C/(x+sqrt(2)).
To find A,B and C multiply both sides by the original denominator:
x=A(x^2-2)+B(x-1)(x+sqrt(2))+C(x-1)(x-sqrt(2)), or
x=x^2(A+B+C)+x(B(sqrt(2)-1)-C(sqrt(2)+1))+(-2A-Bsqrt(2)+Csqrt(2)).
Thus A+B+C=0, B(sqrt(2)-1)-C(sqrt(2)+1)=1 and -2A-Bsqrt(2)+Csqrt(2)=0.
A=-(B+C),
B(sqrt(2)-1)-C(sqrt(2)+1)=1,
2(B+C)-Bsqrt(2)+Csqrt(2)=0, orB(2-sqrt(2))+C(2+sqrt(2))=0, orB(sqrt(2)-1)+C(sqrt(2)+1)=0.
Add and subtract these two equations and obtain
2B(sqrt(2)-1)=1, or B=1/(2(sqrt(2)-1))=(sqrt(2)+1)/2 and
2C(sqrt(2)+1)=-1, or C=-1/(2(sqrt(2)+1))=-(sqrt(2)-1)/2.
And A= -(B+C)=-1.

Now check this result:
-1/(x-1)+(sqrt(2)+1)/2 1/(x-sqrt(2)) -(sqrt(2)-1)/2 1/(x+sqrt(2))=
=-1/(x-1)+1/2 ((sqrt(2)+1)x+sqrt(2)(sqrt(2)+1)-(sqrt(2)-1)x+sqrt(2)(sqrt(2)-1))/(x^2-2)=
=-1/(x-1) +1/2 (2x+4)/(x^2-2)=-1/(x-1)+(x+2)/(x^2-2)=
=(2-x^2+x^2+x-2)/((x+2)(x^2-2))=x/(x^3-x^2-2x+2),
which is correct.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...