a.) Determine the slope of the tangent line to the parabola y=4x−x2 at the point (1,3)
(i) Using the definition (Slope of the tangent line)
limx→af(x)−f(a)x−a
Here, we have a=1 and f(x)=4x−x2, so the slope is
m=limx→1f(x)−f(a)x−1m=limx→14x−x2−[4(1)−(1)2]x−1 Substituting value of a and xm=limx→14x−x2−3x−1 Factor the numeratorm=limx→1−1(x−3)\cancel(x−1)\cancelx−1 Cancel out like terms and simplifym=limx→1(−x+3)=−1+3=2 Evaluate the limit
Therefore,
The slope of the tangent line is m=2
(ii) Using the equation
m=limh→0f(a+h)−f(a)h
Let f(x)=4x−x2. So the slope of the tangent line at (1,3) is
m=limh→0f(1+h)−f(1)hm=limh→04(1+h)−(1+h)2−[4(1)−(1)2]h Subsitute value of am=limh→04+4h−(1+2h+h2)−3h Expand and simplify m=limh→02h−h2h Factor the numeratorm=limh→0\cancelh(2−h)\cancelh Cancel out like terms m=limh→0(2−h)=2−0=2 Evaluate the limit
Therefore,
The slope of the tangent line is m=2
b.) Write an expression of the tangent line in part (a).
Using the point slope form
y−y1=m(x−x1)y−3=2(x−1) Substitute value of x,y and my=2x−2+3 Combine like terms y=2x+1
Therefore,
The equation of the tangent line at (1,3) is y=2x+1
c.) Illustrate the graph of the parabola and the tangent line. As a check on your work, zoom in toward the point (1,3) until
the parabola and the tangent line are indistinguishable.
No comments:
Post a Comment