Friday, March 1, 2013

Single Variable Calculus, Chapter 3, 3.1, Section 3.1, Problem 3

a.) Determine the slope of the tangent line to the parabola y=4xx2 at the point (1,3)

(i) Using the definition (Slope of the tangent line)

limxaf(x)f(a)xa

Here, we have a=1 and f(x)=4xx2, so the slope is


m=limx1f(x)f(a)x1m=limx14xx2[4(1)(1)2]x1 Substituting value of a and xm=limx14xx23x1 Factor the numeratorm=limx11(x3)\cancel(x1)\cancelx1 Cancel out like terms and simplifym=limx1(x+3)=1+3=2 Evaluate the limit 

Therefore,
The slope of the tangent line is m=2
(ii) Using the equation

m=limh0f(a+h)f(a)h

Let f(x)=4xx2. So the slope of the tangent line at (1,3) is


m=limh0f(1+h)f(1)hm=limh04(1+h)(1+h)2[4(1)(1)2]h Subsitute value of am=limh04+4h(1+2h+h2)3h Expand and simplify m=limh02hh2h Factor the numeratorm=limh0\cancelh(2h)\cancelh Cancel out like terms m=limh0(2h)=20=2 Evaluate the limit

Therefore,
The slope of the tangent line is m=2
b.) Write an expression of the tangent line in part (a).

Using the point slope form


yy1=m(xx1)y3=2(x1) Substitute value of x,y and my=2x2+3 Combine like terms y=2x+1

Therefore,
The equation of the tangent line at (1,3) is y=2x+1
c.) Illustrate the graph of the parabola and the tangent line. As a check on your work, zoom in toward the point (1,3) until
the parabola and the tangent line are indistinguishable.

No comments:

Post a Comment