a.) Determine the slope of the tangent line to the parabola $y = 4x - x^2$ at the point $(1, 3)$
$(i)\text{ Using the definition (Slope of the tangent line)}$
$\displaystyle \lim \limits_{x \to a} \frac{f(x) - f(a)} {x - a}$
Here, we have $a = 1$ and $f(x) = 4x - x^2$, so the slope is
$
\begin{equation}
\begin{aligned}
\displaystyle m =& \lim \limits_{x \to 1} \frac{f(x) - f(a)}{x - 1}\\
\\
\displaystyle m =& \lim \limits_{x \to 1} \frac{4x - x^2 - [4(1) - (1)^2]}{x - 1}
&& \text{ Substituting value of $a$ and $x$}\\
\\
\displaystyle m =& \lim \limits_{x \to 1} \frac{4x - x^2 - 3}{x - 1}
&& \text{ Factor the numerator}\\
\\
\displaystyle m =& \lim \limits_{x \to 1} \frac{-1(x - 3) \cancel{(x - 1)}}{\cancel{x - 1}}
&& \text{ Cancel out like terms and simplify}\\
\\
\displaystyle m =& \lim \limits_{x \to 1} (-x+3) = -1+3= 2
&& \text{ Evaluate the limit }\\
\end{aligned}
\end{equation}
$
Therefore,
The slope of the tangent line is $m=2$
$(ii)$ Using the equation
$\displaystyle m = \lim \limits_{h \to 0} \frac{f (a + h) - f(a)}{h}$
Let $f(x) = 4x - x^2$. So the slope of the tangent line at $(1, 3)$ is
$
\begin{equation}
\begin{aligned}
\displaystyle m =& \lim \limits_{h \to 0} \frac{f(1 + h) - f(1)}{h}\\
\\
\displaystyle m =& \lim \limits_{h \to 0} \frac{4(1 + h) - ( 1 + h)^2 - [4(1) - (1)^2]}{h}
&& \text{ Subsitute value of $a$} \\
\\
\displaystyle m =& \lim \limits_{h \to 0} \frac{4 + 4h - ( 1 + 2h + h^2) - 3}{h}
&& \text{ Expand and simplify }\\
\\
\displaystyle m =& \lim \limits_{h \to 0} \frac{2h - h^2}{h}
&& \text{ Factor the numerator}\\
\\
\displaystyle m =& \lim \limits_{h \to 0} \frac{\cancel{h} ( 2 - h)}{\cancel{h}}
&& \text{ Cancel out like terms }\\
\\
\displaystyle m =& \lim \limits_{h \to 0} (2 - h) = 2 - 0 = 2
&& \text{ Evaluate the limit}\\
\end{aligned}
\end{equation}
$
Therefore,
The slope of the tangent line is $m=2$
b.) Write an expression of the tangent line in part (a).
Using the point slope form
$
\begin{equation}
\begin{aligned}
y - y_1 =& m ( x - x_1) && \\
\\
y - 3 =& 2 ( x - 1)
&& \text{ Substitute value of $x, y$ and $m$}\\
\\
y =& 2x - 2 + 3
&& \text{ Combine like terms }\\
y =& 2x + 1
\end{aligned}
\end{equation}
$
Therefore,
The equation of the tangent line at $(1,3)$ is $y = 2x + 1$
c.) Illustrate the graph of the parabola and the tangent line. As a check on your work, zoom in toward the point $(1,3)$ until
the parabola and the tangent line are indistinguishable.
No comments:
Post a Comment