Friday, March 1, 2013

Single Variable Calculus, Chapter 3, 3.1, Section 3.1, Problem 3

a.) Determine the slope of the tangent line to the parabola y=4xx2 at the point (1,3)

(i) Using the definition (Slope of the tangent line)

limxaf(x)f(a)xa

Here, we have a=1 and f(x)=4xx2, so the slope is


m=limx1f(x)f(a)x1m=limx14xx2[4(1)(1)2]x1 Substituting value of a and xm=limx14xx23x1 Factor the numeratorm=limx11(x3)\cancel(x1)\cancelx1 Cancel out like terms and simplifym=limx1(x+3)=1+3=2 Evaluate the limit 

Therefore,
The slope of the tangent line is m=2
(ii) Using the equation

m=limh0f(a+h)f(a)h

Let f(x)=4xx2. So the slope of the tangent line at (1,3) is


m=limh0f(1+h)f(1)hm=limh04(1+h)(1+h)2[4(1)(1)2]h Subsitute value of am=limh04+4h(1+2h+h2)3h Expand and simplify m=limh02hh2h Factor the numeratorm=limh0\cancelh(2h)\cancelh Cancel out like terms m=limh0(2h)=20=2 Evaluate the limit

Therefore,
The slope of the tangent line is m=2
b.) Write an expression of the tangent line in part (a).

Using the point slope form


yy1=m(xx1)y3=2(x1) Substitute value of x,y and my=2x2+3 Combine like terms y=2x+1

Therefore,
The equation of the tangent line at (1,3) is y=2x+1
c.) Illustrate the graph of the parabola and the tangent line. As a check on your work, zoom in toward the point (1,3) until
the parabola and the tangent line are indistinguishable.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...