Find the intergral ∫10(4√u+1)2du, if it exists.
∫10(4√u+1)2du=∫10[(4√u)2+24√u+1]du∫10(4√u+1)2du=∫10(√u+24√u+1)du∫10(4√u+1)2du=∫10u12+2u14+1du∫10(4√u+1)2du=[u12+112+1+2(u14+114+1)+u]10∫10(4√u+1)2du=[u3232+2(u5454)+u]10∫10(4√u+1)2du=[2u323+8u545+u]10∫10(4√u+1)2du=2(1)323+8(1)545+1−2(0)323−(0)545−0∫10(4√u+1)2du=23+85+1∫10(4√u+1)2du=4915
No comments:
Post a Comment