Find the definite integral ∫π20cosxsin(sinx)dx
Let u=sinx, then du=cosxdx. When x=0,u=0 and when x=π2,u=1. Thus,
∫π20cosxsin(sinx)dx=∫π20sin(sinx)cosxdx∫π20cosxsin(sinx)dx=∫π20sinudu∫π20cosxsin(sinx)dx=−cosu|π20∫π20cosxsin(sinx)dx=−cos(1)−(−cos0)∫π20cosxsin(sinx)dx=−cos(1)+1∫π20cosxsin(sinx)dx=0.4597
No comments:
Post a Comment