Tuesday, December 11, 2012

Single Variable Calculus, Chapter 5, 5.5, Section 5.5, Problem 44

Find the definite integral π20cosxsin(sinx)dx

Let u=sinx, then du=cosxdx. When x=0,u=0 and when x=π2,u=1. Thus,



π20cosxsin(sinx)dx=π20sin(sinx)cosxdxπ20cosxsin(sinx)dx=π20sinuduπ20cosxsin(sinx)dx=cosu|π20π20cosxsin(sinx)dx=cos(1)(cos0)π20cosxsin(sinx)dx=cos(1)+1π20cosxsin(sinx)dx=0.4597

No comments:

Post a Comment