Tuesday, September 11, 2012

int (x^2+12x+12)/(x^3-4x) dx Use partial fractions to find the indefinite integral

 
int (x^2+12x+12)/(x^3-4x)dx
To solve using partial fraction method, the denominator of the integrand should be factored.
(x^2+12x+12)/(x^3-4x) =(x^2+12x+12)/(x(x-2)(x+2))
Then, express it as sum of fractions.
(x^2+12x+12)/(x(x-2)(x+2)) = A/x + B/(x-2) + C/(x+2)
To determine the values of A, B and C, multiply both sides by the LCD of the fractions present.
x(x-2)(x+2)*(x^2+12x+12)/(x(x-2)(x+2)) = (A/x + B/(x-2) + C/(x+2))*x(x-2)(x+2)
x^2+12x+12=A(x-2)(x+2) +Bx(x+2)+Cx(x-2)
Then, assign values to x in which either x, x-2 or x+2 will become zero.
So, plug-in x=0 to get the value of A.
0^2+12(0)+12=A(0-2)(0+2)+B(0)(0+2)+C(0)(0-2)
0+0+12=A(-4)+B(0)+C(0)
12=-4A
-3=A
Also, plug-in x=2 to get the value of B.
2^2+12(2)+12=A(2-2)(2+2)+B(2)(2+2)+C(2)(2-2)
4+24+12=A(0)+B(8)+C(0)
40=8B
5=B
And subsitute x=-2 to get the value of C.
(-2)^2 + 12(-2)+12=A(-2-2)(-2+2)+B(-2)(-2+2)+C(-2)(-2-2)
4-24+12=A(0)+B(0)+C(8)
-8=8C
-1=C
So the partial fraction decomposition of the integral is
int (x^2+12x+12)/(x^3-4x)dx
= int (x^2+12x+12)/(x(x-2)(x+2))dx
= int(-3/x +5/(x-2)-1/(x+2))dx
Then, express it as three integrals.
= int-3/xdx + int 5/(x-2)dx - int 1/(x+2)dx
= -3int 1/xdx + 5int 1/(x-2)dx - int 1/(x+2)dx
To take the integral, apply the formula int 1/u du =ln|u|+C .
=-3ln|x| + 5ln|x-2|-ln|x+2|+C
 
Therefore,int (x^2+12x+12)/(x^3-4x)dx=-3ln|x| + 5ln|x-2|-ln|x+2|+C.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...