Monday, June 18, 2012

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 78

For what point does the normal line to the parabola $y = x-x^2$ at the
point $(1,0)$ intersect the parabola a second time. Illustrate with a sketch.
Given: $y = x -x^2 \quad$ $P(1,0)$

Solving for the slope of the tangent line

$
\begin{equation}
\begin{aligned}
y & = x - x^2\\
\\
y' & = \frac{d}{dx}(x) - \frac{d}{dx}(x^2)\\
\\
y' & = 1 - 2x
\end{aligned}
\end{equation}
$


Let $y' = $ slope$(m_T)$ of the tangent line

$
\begin{equation}
\begin{aligned}
y' = m_T &= 1 - 2x
&& \text{Substitute value of } x\\
\\
m_T &= 1-2(1)
&& \text{Simplify the equation}\\
\\
m_T &= -1
\end{aligned}
\end{equation}
$


Solving for the slope of the normal line

$
\begin{equation}
\begin{aligned}
m_N &= \frac{-1}{m_T} && \text{Substitute value of the slope of the tangent line}\\
\\
& = \frac{-1}{-1}\\
\\
m_N &= 1
\end{aligned}
\end{equation}
$

Solving for the equation of the normal line

$
\begin{equation}
\begin{aligned}
y - y_1 & = m_N(x-x_1)
&& \text{Substitute the value of }x,y \text{ and slope}(m_N)\\
\\
y - 0 & = 1(x-1)
&& \text{Simplify the equation}\\
\\
y & = x -1
\end{aligned}
\end{equation}
$

Equating the normal line and the parabola to find the point of intersection

$
\begin{equation}
\begin{aligned}
\text{Normal line } \qquad y &= x - 1\\
\\
\text{Parabola} \qquad y& = x-x^2
\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}
x - x^2 &= x -1
&& \text{Add } -x \text{ to each sides}\\
\\
x - x - x^2 &= x - x - 1
&& \text{Comine like terms}\\
\\
-x^2 &= -1
&& \text{Multiply -1 to each sides}\\
\\
x^2 &= 1
&& \text{Take the square root of each sides}\\
\\
x =1, \quad x = -1
\end{aligned}
\end{equation}
$

Finding for the second point of intersection

$
\begin{equation}
\begin{aligned}
y &= x - x^2\\
y &= -1 - (-1)^2\\
y &= -2
\end{aligned}
\end{equation}
$


Thus, the point where the normal line intersects the parabola for the second time is at the point $(-1,-2,)$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...