Friday, June 1, 2012

Calculus: Early Transcendentals, Chapter 7, 7.1, Section 7.1, Problem 30

int_1^sqrt(3)arctan(1/x)dx
If f(x) and g(x) are differentiable functions, then
intf(x)g'(x)dx=f(x)g(x)-intf'(x)g(x)dx
If we write f(x)=u and g'(x)=v, then
intuvdx=uintvdx-int(u'intvdx)dx
Using the above method of integration by parts,
intarctan(1/x)dx=arctan(1/x)*int1dx-int(d/dx(arctan(1/x)int1dx)dx
=arctan(1/x)*x-int(1/(1+(1/x)^2)*d/dx(1/x)int1dx)dx
=xarctan(1/x)-int(x^2/(x^2+1)*(-1x^-2)*x)dx
=xarctan(1/x)+intx/(x^2+1)dx
Now let's evaluate intx/(x^2+1)dx
substitute t=x^2+1,=>dt=2xdx
intx/(x^2+1)dx=intdt/(2t)
=1/2ln|t|
substitute back t=x^2+1
=1/2ln|x^2+1|
intarctan(1/x)dx=xarctan(1/x)+1/2ln|x^2+1|+C
C is a constant
Now evaluate the definite integral,
int_1^sqrt(3)arctan(1/x)dx=[xarctan(1/x)+1/2ln|x^2+1|]_1^sqrt(3)
=[sqrt(3)arctan(1/sqrt(3))+1/2ln(3+1)]-[1arctan(1/1)+1/2ln(1+1)]
=[sqrt(3)pi/6+1/2ln(4)]-[pi/4+1/2ln2]
=[sqrt(3)pi/6+1/2ln(2^2)]-[pi/4+1/2ln(2)]
=(sqrt(3)pi/6+ln(2)-pi/4-1/2ln(2))
=(sqrt(3)pi/6-pi/4+1/2ln(2))
=(2sqrt(3)-3)pi/12+1/2ln(2)

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...