Friday, May 25, 2012

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 16

Determine the integral cosθcos5(sinθ)dθ

Let u=sinθ, then du=cosθdθ. Thus,


cosθcos5(sinθ)dθ=cos5uducos5udu=cos4ucosuducos5udu=(cos2u)2cosuduApply Pythagorean Idendity cos2u+sin2u=1cos5udu=(1sin2u)2cosudu


Let v=sinu, then dv=cosudu. Thus,


(1sin2u)2cosudu=(1v2)2dv(1sin2u)2cosudu=(12v2+v4)dv(1sin2u)2cosudu=v2v2+12+1+v4+14+1+c(1sin2u)2cosudu=v2v33+v55+cSubstitute value of v(1sin2u)2cosudu=sinu2(sin)33+(sinu)55+c(1sin2u)2cosudu=sinu2sin3u3+sin5uu+cSubstitute value of u(1sin2u)2cosudu=sin(sinθ)2sin3(sinθ)3+sin5(sinθ)5+c


@ 2nd term


18π0cos2tdt=182π0cosudu218π0cos2tdt=1162π0cosudu18π0cos2tdt=116[sinu]2π018π0cos2tdt=116(sin2πsin0)18π0cos2tdt=116(0)18π0cos2tdt=0


@ 3rd term


18π0cos22tdt=182π0cos2udu218π0cos22tdt=1162π0cos2uduApply half-angle formula cos2u=2cos2u118π0cos22tdt=1162π0(cos2u+12)du18π0cos22tdt=1322π0(cos2u+1)du


Let v=2u, then dv=2du, so du=dv2. When u=0,v=0 and when u=2π,v=4π


132320(cos2u+1)du=1324π0(cosv+1)dv2132320(cos2u+1)du=1644π0(cosv+1)dv132320(cos2u+1)du=164[sinv+v]4π0132320(cos2u+1)du=164(sin4π+4πsin00)132320(cos2u+1)du=164(0+4π00)132320(cos2u+1)du=4π64132320(cos2u+1)du=π16


@ 4th term


18π0cos32tdt=182π0cos3udu218π0cos32tdt=1162π0cos3udu18π0cos32tdt=1162π0(cos2u)(cosu)duApply Trigonometric Identities cos2u+sin2u=118π0cos32tdt=1162π0(1sin2u)(cosu)du


Let v=sinu, then dv=cosudu. When u=0,v=0 and when u=2π,v=0. Therefore,


1162π0(1sin2u)(cosudu)=11600(1v2)dv1162π0(1sin2u)(cosudu)=116[vv33]001162π0(1sin2u)(cosudu)=116(0)1162π0(1sin2u)(cosudu)=0


Combine the results of integration term by term


π0sin2tcos4tdt=π8+0π160π0sin2tcos4tdt=2π+0π016π0sin2tcos4tdt=π16

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...