Friday, May 25, 2012

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 16

Determine the integral $\displaystyle \int \cos \theta \cos^5 (\sin \theta) d \theta$

Let $u = \sin \theta$, then $du = \cos \theta d \theta$. Thus,


$
\begin{equation}
\begin{aligned}

\int \cos \theta \cos^5 (\sin \theta) d \theta =& \int \cos^5 u du
\\
\\
\int \cos^5 u du =& \int \cos^4 u \cos u du
\\\\
\int \cos^5 u du =& \int (\cos^2 u)^2 \cos u du \qquad \text{Apply Pythagorean Idendity } \cos^2 u + \sin^2 u = 1
\\
\\
\int \cos^5 u du =& \int (1 - \sin^2 u)^2 \cos u du

\end{aligned}
\end{equation}
$


Let $v = \sin u$, then $dv = \cos u du$. Thus,


$
\begin{equation}
\begin{aligned}

\int (1 - \sin^2 u)^2 \cos u du =& \int (1 - v^2)^2 dv &&
\\
\\
\int (1 - \sin^2 u)^2 \cos u du =& \int (1 - 2v^2 + v^4) dv &&
\\
\\
\int (1 - \sin^2 u)^2 \cos u du =& v - \frac{2v^{2 + 1}}{2 + 1} + \frac{v^{4 + 1}}{4 + 1} + c &&
\\
\\
\int (1 - \sin^2 u)^2 \cos u du =& v - \frac{2v^3}{3} + \frac{v^5}{5} + c
&& \text{Substitute value of } v
\\
\\
\int (1 - \sin^2 u)^2 \cos u du =& \sin u - \frac{2 (\sin )^3}{3} + \frac{(\sin u)^5}{5} + c
\\
\\
\int (1 - \sin^2 u)^2 \cos u du =& \sin u - \frac{2 \sin^3 u}{3} + \frac{\sin^5 u}{u} + c
&& \text{Substitute value of } u
\\
\\
\int (1 - \sin^2 u)^2 \cos u du =& \sin (\sin \theta) - \frac{2 \sin^3 (\sin \theta)}{3} + \frac{\sin^5 (\sin \theta)}{5} + c

\end{aligned}
\end{equation}
$


@ 2nd term


$
\begin{equation}
\begin{aligned}

\frac{1}{8} \int^{\pi}_0 \cos 2t dt =& \frac{1}{8} \int^{2 \pi}_0 \cos u \cdot \frac{du}{2}
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos 2t dt =& \frac{1}{16} \int^{2 \pi}_0 \cos u du
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos 2t dt =& \frac{1}{16} \left[ \sin u \right]^{2 \pi}_0
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos 2t dt =& \frac{1}{16} (\sin 2 \pi - \sin 0)
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos 2t dt =& \frac{1}{16} (0)
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos 2t dt =& 0

\end{aligned}
\end{equation}
$


@ 3rd term


$
\begin{equation}
\begin{aligned}

\frac{1}{8} \int^{\pi}_0 \cos^2 2t dt =& \frac{1}{8} \int^{2 \pi}_0 \cos^2 u \cdot \frac{du}{2}
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos^2 2t dt =& \frac{1}{16} \int^{2 \pi}_0 \cos^2 u du
\qquad \text{Apply half-angle formula } \cos 2 u = 2 \cos^2 u - 1
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos^2 2t dt =& \frac{1}{16} \int^{2 \pi}_0 \left(\frac{\cos 2 u + 1}{2} \right) du
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos^2 2t dt =& \frac{1}{32} \int^{2 \pi}_0 (\cos 2u + 1) du

\end{aligned}
\end{equation}
$


Let $v = 2u$, then $dv = 2 du$, so $\displaystyle du = \frac{dv}{2}$. When $u = 0, v = 0$ and when $u = 2 \pi, v = 4 \pi$


$
\begin{equation}
\begin{aligned}

\frac{1}{32} \int^{32}_0 (\cos 2u + 1) du =& \frac{1}{32} \int^{4 \pi}_0 (\cos v + 1) \cdot \frac{dv}{2}
\\
\\
\frac{1}{32} \int^{32}_0 (\cos 2u + 1) du =& \frac{1}{64} \int^{4 \pi}_0 (\cos v + 1) dv
\\
\\
\frac{1}{32} \int^{32}_0 (\cos 2u + 1) du =& \frac{1 }{64} \left[ \sin v + v \right]^{4 \pi}_0
\\
\\
\frac{1}{32} \int^{32}_0 (\cos 2u + 1) du =& \frac{1}{64} (\sin 4 \pi + 4 \pi - \sin 0 - 0)
\\
\\
\frac{1}{32} \int^{32}_0 (\cos 2u + 1) du =& \frac{1}{64} (0 + 4 \pi - 0 - 0)
\\
\\
\frac{1}{32} \int^{32}_0 (\cos 2u + 1) du =& \frac{4 \pi}{64}
\\
\\
\frac{1}{32} \int^{32}_0 (\cos 2u + 1) du =& \frac{\pi}{16}

\end{aligned}
\end{equation}
$


@ 4th term


$
\begin{equation}
\begin{aligned}

\frac{1}{8} \int^{\pi}_0 \cos^3 2t dt =& \frac{1}{8} \int^{2 \pi}_0 \cos^3 u \cdot \frac{du}{2}
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos^3 2t dt =& \frac{1}{16} \int^{2 \pi}_0 \cos^3 u du
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos^3 2t dt =& \frac{1}{16} \int^{2 \pi}_0 (\cos^2 u)(\cos u) du
\qquad \text{Apply Trigonometric Identities } \cos^2 u + \sin^2 u = 1
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos^3 2t dt =& \frac{1}{16} \int^{2 \pi}_0 (1 - \sin^2 u)(\cos u) du

\end{aligned}
\end{equation}
$


Let $v = \sin u$, then $dv = \cos u du$. When $u = 0, v = 0$ and when $u = 2 \pi, v = 0$. Therefore,


$
\begin{equation}
\begin{aligned}

\frac{1}{16} \int^{2 \pi}_0 (1 - \sin^2 u)(\cos u du) =& \frac{1}{16} \int^0_0 (1 - v^2) dv
\\
\\
\frac{1}{16} \int^{2 \pi}_0 (1 - \sin^2 u)(\cos u du) =& \frac{1}{16} \left[ v - \frac{v^3}{3} \right]^0_0
\\
\\
\frac{1}{16} \int^{2 \pi}_0 (1 - \sin^2 u)(\cos u du) =& \frac{1}{16} (0)
\\
\\
\frac{1}{16} \int^{2 \pi}_0 (1 - \sin^2 u)(\cos u du) =& 0

\end{aligned}
\end{equation}
$


Combine the results of integration term by term


$
\begin{equation}
\begin{aligned}

\int^{\pi}_0 \sin^2 t \cos^4 t dt =& \frac{\pi}{8} + 0 - \frac{\pi}{16} - 0
\\
\\
\int^{\pi}_0 \sin^2 t \cos^4 t dt =& \frac{2 \pi + 0 - \pi - 0}{16}
\\
\\
\int^{\pi}_0 \sin^2 t \cos^4 t dt =& \frac{\pi}{16}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...