Thursday, May 10, 2012

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 18

Determine the integral cot5θsin4θdθ


cot5θsin4θdθ=cos5θsin5θsin4θdθcot5θsin4θdθ=cos5θsinθdθcot5θsin4θdθ=cos4θsinθdθcot5θsin4θdθ=(cos2θ)2sinθcosθdθApply Pythagorean Identities cos2θ+sin2θ=1cot5θsin4θdθ=(1sin2θ)2sinθcosθdθ


Let u=sinθ, then du=cosθdθ. Thus,


(1sin2θ)2sinθcosθdθ=(1u2)2udu(1sin2θ)2sinθcosθdθ=(12u2+u4u)du(1sin2θ)2sinθcosθdθ=(1u2u2u+u4u)du(1sin2θ)2sinθcosθdθ=(1u2u+u3)du(1sin2θ)2sinθcosθdθ=lnu2u1+11+1+u3+13+1+c(1sin2θ)2sinθcosθdθ=lnU\cancel2u2\cancel2+u44+c(1sin2θ)2sinθcosθdθ=lnuu2+u44+cSubstitute value of u(1sin2θ)2sinθcosθdθ=ln(sinθ)(sinθ)2+(sinθ)44+c(1sin2θ)2sinθcosθdθ=ln(sinθ)sin2θ+sin4θ4+c

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...