Thursday, May 10, 2012

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 18

Determine the integral $\displaystyle \int \cot^5 \theta \sin^4 \theta d \theta$


$
\begin{equation}
\begin{aligned}

\int \cot^5 \theta \sin^4 \theta d \theta =& \int \frac{\cos^5 \theta}{\sin^5 \theta} \sin^4 \theta d \theta
\\
\\
\int \cot^5 \theta \sin^4 \theta d \theta =& \int \frac{\cos^5 \theta}{\sin \theta} d \theta
\\
\\
\int \cot^5 \theta \sin^4 \theta d \theta =& \int \frac{\cos^4 \theta}{\sin \theta} d \theta
\\
\\
\int \cot^5 \theta \sin^4 \theta d \theta =& \int \frac{(\cos^2 \theta)^2}{\sin \theta} \cos \theta d \theta
\qquad \text{Apply Pythagorean Identities } \cos^2 \theta + \sin^2 \theta = 1
\\
\\
\int \cot^5 \theta \sin^4 \theta d \theta =& \int \frac{(1 - \sin^2 \theta)^2}{\sin \theta} \cos \theta d \theta

\end{aligned}
\end{equation}
$


Let $u = \sin \theta$, then $du = \cos \theta d \theta$. Thus,


$
\begin{equation}
\begin{aligned}

\int \frac{(1 - \sin^2 \theta)^2}{\sin \theta} \cos \theta d \theta =& \int \frac{(1 - u^2)^2}{u} du
&&
\\
\\
\int \frac{(1 - \sin^2 \theta)^2}{\sin \theta} \cos \theta d \theta =& \int \left( \frac{1 - 2u^2 + u^4}{u} \right) du
&&
\\
\\
\int \frac{(1 - \sin^2 \theta)^2}{\sin \theta} \cos \theta d \theta =& \int \left( \frac{1}{u} - \frac{2u^2}{u} + \frac{u^4}{u} \right) du
&&
\\
\\
\int \frac{(1 - \sin^2 \theta)^2}{\sin \theta} \cos \theta d \theta =& \int \left(
\frac{1}{u} - 2u + u^3 \right) du
&&
\\
\\
\int \frac{(1 - \sin^2 \theta)^2}{\sin \theta} \cos \theta d \theta =& \ln u - \frac{2u^{1 + 1}}{1 + 1} + \frac{u^{3 + 1}}{3 + 1} + c
&&
\\
\\
\int \frac{(1 - \sin^2 \theta)^2}{\sin \theta} \cos \theta d \theta =& \ln U - \frac{\cancel{2}u^2}{\cancel{2}} + \frac{u^4}{4} + c
&&
\\
\\
\int \frac{(1 - \sin^2 \theta)^2}{\sin \theta} \cos \theta d \theta =& \ln u - u^2 + \frac{u^4}{4} + c
&& \text{Substitute value of } u
\\
\\
\int \frac{(1 - \sin^2 \theta)^2}{\sin \theta} \cos \theta d \theta =& \ln (\sin \theta) - (\sin \theta)^2 + \frac{(\sin \theta)^4}{4} + c
&&
\\
\\
\int \frac{(1 - \sin^2 \theta)^2}{\sin \theta} \cos \theta d \theta =& \ln (\sin \theta) - \sin^2 \theta + \frac{\sin^4 \theta}{4} + c



\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...