Tuesday, January 17, 2012

Single Variable Calculus, Chapter 3, 3.1, Section 3.1, Problem 6

Determine the equation of the tangent line to the curve $y = 2x^3 - 5x$ at the point ( -1, 3)

Using the definition (Slope of tangent line)


$
\begin{equation}
\begin{aligned}


\displaystyle m =& \lim \limits_{x \to a} \frac{f(x) - f(a)}{x - a}\\
\\
\text{We have } a =& -1 \text{ and } f(x) = 2x^3 - 5x, \text{ So the slope is }\\
\\
\displaystyle m =& \lim \limits_{x \to -1} \frac{f(x) - f(-1)}{x + 1}\\
\\
\displaystyle m =& \lim \limits_{x \to -1} \frac{2x^3 - 5x - [2 (-1)^3 - 5(-1)]}{x + 1}
&& \text{ Substitute value of $a$ and $x$}\\
\\
\displaystyle m =& \lim \limits_{x \to -1} \frac{(2x^3 - 5x - 3)}{x + 1}

\end{aligned}
\end{equation}
$



Using Synthetic Division to obtain the factor of the numerator










$
\begin{equation}
\begin{aligned}

\displaystyle m =& \lim\limits_{x \to -1} \frac{ (2x^2 - 2x - 3)\cancel{( x + 1)}}{\cancel{x + 1}}
&& \text{ Cancel out like terms}\\
\\
\displaystyle m =& \lim \limits_{x \to -1} (2x^2 - 2x - 3) = 2(-1)^2 - 2(-1)-3
&& \text{ Evaluate the limit }\\
\\
m =& 1

\end{aligned}
\end{equation}
$


Using point slope form


$
\begin{equation}
\begin{aligned}

y - y_1 =& m ( x - x_1)\\
\\
y - 3 =& 1 ( x + 1 )
&& \text{ Substitute value of $x, y$ and $m$}\\
\\
y - 3 =& x + 1
&& \text{ Combine like terms}\\
\\
y =& x +4
\end{aligned}
\end{equation}
$



Therefore,
The equation of the tangent line at (-1,3) is $y = x + 4$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...